* feat: alter "RagFlow" to "RAGFlow" * feat: move logo style to style tag * feat: add logo-with-text.png * feat: hide TranslationIcontags/v0.1.0
| <div align="center"> | <div align="center"> | ||||
| <a href="https://demo.ragflow.io/"> | <a href="https://demo.ragflow.io/"> | ||||
| <img src="https://github.com/infiniflow/ragflow/assets/12318111/f034fb27-b3bf-401b-b213-e1dfa7448d2a" width="320" alt="ragflow logo"> | |||||
| <img src="web/src/assets/logo-with-text.png" width="350" alt="ragflow logo"> | |||||
| </a> | </a> | ||||
| </div> | </div> | ||||
| <p align="center"> | <p align="center"> | ||||
| <a href="./README.md">English</a> | | <a href="./README.md">English</a> | | ||||
| <a href="./README_zh.md">简体中文</a> | <a href="./README_zh.md">简体中文</a> | ||||
| [RAGFlow](http://demo.ragflow.io) is an open-source, Retrieval-Augmented Generation engine built on large language models (LLM), deep document understanding, and multiple recall. It offers a streamlined RAG workflow for businesses of any scale, providing truthful responses with solid citations through a generative AI knowledge management platform. | [RAGFlow](http://demo.ragflow.io) is an open-source, Retrieval-Augmented Generation engine built on large language models (LLM), deep document understanding, and multiple recall. It offers a streamlined RAG workflow for businesses of any scale, providing truthful responses with solid citations through a generative AI knowledge management platform. | ||||
| ## 🌟 Key Features | ## 🌟 Key Features | ||||
| ### 🍭 **"Quality in, quality out"** | ### 🍭 **"Quality in, quality out"** | ||||
| - Deep document understanding-based knowledge extraction from unstructured data with complicated formats. | |||||
| - Finds "needle in a data haystack" of literally unlimited tokens. | |||||
| - Deep document understanding-based knowledge extraction from unstructured data with complicated formats. | |||||
| - Finds "needle in a data haystack" of literally unlimited tokens. | |||||
| ### 🍱 **Template-based chunking** | ### 🍱 **Template-based chunking** | ||||
| - Intelligent and explainable. | |||||
| - Plenty of template options to choose from. | |||||
| - Intelligent and explainable. | |||||
| - Plenty of template options to choose from. | |||||
| ### 🌱 **Grounded citations with reduced hallucinations** | ### 🌱 **Grounded citations with reduced hallucinations** | ||||
| - Visualization of text chunking to allow human intervention. | |||||
| - Quick view of the key references and traceable citations to support grounded answers. | |||||
| - Visualization of text chunking to allow human intervention. | |||||
| - Quick view of the key references and traceable citations to support grounded answers. | |||||
| ### 🍔 **Compatibility with heterogeneous data sources** | ### 🍔 **Compatibility with heterogeneous data sources** | ||||
| - Supports Word, slides, excel, txt, images, scanned copies, structured data, web pages, and more. | |||||
| - Supports Word, slides, excel, txt, images, scanned copies, structured data, web pages, and more. | |||||
| ### 🛀 **Automated and effortless RAG workflow** | ### 🛀 **Automated and effortless RAG workflow** | ||||
| - Streamlined RAG orchestration catered to both personal and large businesses. | |||||
| - Configurable LLMs as well as embedding models. | |||||
| - Multiple recall paired with fused re-ranking. | |||||
| - Intuitive APIs for seamless integration with business. | |||||
| - Streamlined RAG orchestration catered to both personal and large businesses. | |||||
| - Configurable LLMs as well as embedding models. | |||||
| - Multiple recall paired with fused re-ranking. | |||||
| - Intuitive APIs for seamless integration with business. | |||||
| ## 🔎 System Architecture | ## 🔎 System Architecture | ||||
| ### 🚀 Start up the server | ### 🚀 Start up the server | ||||
| 1. Ensure `vm.max_map_count` > 65535: | |||||
| 1. Ensure `vm.max_map_count` > 65535: | |||||
| > To check the value of `vm.max_map_count`: | > To check the value of `vm.max_map_count`: | ||||
| > | > | ||||
| > ```bash | |||||
| > ```bash | |||||
| > $ sysctl vm.max_map_count | > $ sysctl vm.max_map_count | ||||
| > ``` | > ``` | ||||
| > | > | ||||
| $ git clone https://github.com/infiniflow/ragflow.git | $ git clone https://github.com/infiniflow/ragflow.git | ||||
| ``` | ``` | ||||
| 3. Build the pre-built Docker images and start up the server: | |||||
| 3. Build the pre-built Docker images and start up the server: | |||||
| ```bash | ```bash | ||||
| $ cd ragflow/docker | $ cd ragflow/docker | ||||
| > The core image is about 15 GB in size and may take a while to load. | > The core image is about 15 GB in size and may take a while to load. | ||||
| 4. Check the server status after having the server up and running: | 4. Check the server status after having the server up and running: | ||||
| ```bash | ```bash | ||||
| $ docker logs -f ragflow-server | $ docker logs -f ragflow-server | ||||
| ``` | ``` | ||||
| *The following output confirms a successful launch of the system:* | |||||
| _The following output confirms a successful launch of the system:_ | |||||
| ```bash | ```bash | ||||
| ____ ______ __ | |||||
| ____ ______ __ | |||||
| / __ \ ____ _ ____ _ / ____// /____ _ __ | / __ \ ____ _ ____ _ / ____// /____ _ __ | ||||
| / /_/ // __ `// __ `// /_ / // __ \| | /| / / | / /_/ // __ `// __ `// /_ / // __ \| | /| / / | ||||
| / _, _// /_/ // /_/ // __/ / // /_/ /| |/ |/ / | |||||
| /_/ |_| \__,_/ \__, //_/ /_/ \____/ |__/|__/ | |||||
| /____/ | |||||
| / _, _// /_/ // /_/ // __/ / // /_/ /| |/ |/ / | |||||
| /_/ |_| \__,_/ \__, //_/ /_/ \____/ |__/|__/ | |||||
| /____/ | |||||
| * Running on all addresses (0.0.0.0) | * Running on all addresses (0.0.0.0) | ||||
| * Running on http://127.0.0.1:9380 | * Running on http://127.0.0.1:9380 | ||||
| * Running on http://172.22.0.5:9380 | * Running on http://172.22.0.5:9380 | ||||
| INFO:werkzeug:Press CTRL+C to quit | INFO:werkzeug:Press CTRL+C to quit | ||||
| ``` | |||||
| ``` | |||||
| 5. In your web browser, enter the IP address of your server as prompted and log in to RAGFlow. | 5. In your web browser, enter the IP address of your server as prompted and log in to RAGFlow. | ||||
| 6. In [service_conf.yaml](./docker/service_conf.yaml), select the desired LLM factory in `user_default_llm` and update the `API_KEY` field with the corresponding API key. | 6. In [service_conf.yaml](./docker/service_conf.yaml), select the desired LLM factory in `user_default_llm` and update the `API_KEY` field with the corresponding API key. | ||||
| > See [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md) for more information. | > See [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md) for more information. | ||||
| *The show is now on!* | |||||
| _The show is now on!_ | |||||
| ## 🔧 Configurations | ## 🔧 Configurations | ||||
| - [service_conf.yaml](./docker/service_conf.yaml): Configures the back-end services. | - [service_conf.yaml](./docker/service_conf.yaml): Configures the back-end services. | ||||
| - [docker-compose.yml](./docker/docker-compose.yml): The system relies on [docker-compose.yml](./docker/docker-compose.yml) to start up. | - [docker-compose.yml](./docker/docker-compose.yml): The system relies on [docker-compose.yml](./docker/docker-compose.yml) to start up. | ||||
| You must ensure that changes to the [.env](./docker/.env) file are in line with what are in the [service_conf.yaml](./docker/service_conf.yaml) file. | |||||
| You must ensure that changes to the [.env](./docker/.env) file are in line with what are in the [service_conf.yaml](./docker/service_conf.yaml) file. | |||||
| > The [./docker/README](./docker/README.md) file provides a detailed description of the environment settings and service configurations, and you are REQUIRED to ensure that all environment settings listed in the [./docker/README](./docker/README.md) file are aligned with the corresponding configurations in the [service_conf.yaml](./docker/service_conf.yaml) file. | > The [./docker/README](./docker/README.md) file provides a detailed description of the environment settings and service configurations, and you are REQUIRED to ensure that all environment settings listed in the [./docker/README](./docker/README.md) file are aligned with the corresponding configurations in the [service_conf.yaml](./docker/service_conf.yaml) file. | ||||
| To update the default serving port (80), go to [docker-compose.yml](./docker/docker-compose.yml) and change `80:80` to `<YOUR_SERVING_PORT>:80`. | To update the default serving port (80), go to [docker-compose.yml](./docker/docker-compose.yml) and change `80:80` to `<YOUR_SERVING_PORT>:80`. | ||||
| > Updates to all system configurations require a system reboot to take effect: | > Updates to all system configurations require a system reboot to take effect: | ||||
| > | |||||
| > | |||||
| > ```bash | > ```bash | ||||
| > $ docker-compose up -d | > $ docker-compose up -d | ||||
| > ``` | > ``` | ||||
| ## 🙌 Contributing | ## 🙌 Contributing | ||||
| RAGFlow flourishes via open-source collaboration. In this spirit, we embrace diverse contributions from the community. If you would like to be a part, review our [Contribution Guidelines](https://github.com/infiniflow/ragflow/blob/main/CONTRIBUTING.md) first. | |||||
| RAGFlow flourishes via open-source collaboration. In this spirit, we embrace diverse contributions from the community. If you would like to be a part, review our [Contribution Guidelines](https://github.com/infiniflow/ragflow/blob/main/CONTRIBUTING.md) first. |
| <div align="center"> | <div align="center"> | ||||
| <a href="https://demo.ragflow.io/"> | <a href="https://demo.ragflow.io/"> | ||||
| <img src="https://github.com/infiniflow/ragflow/assets/12318111/f034fb27-b3bf-401b-b213-e1dfa7448d2a" width="320" alt="ragflow logo"> | |||||
| <img src="web/src/assets/logo-with-text.png" width="350" alt="ragflow logo"> | |||||
| </a> | </a> | ||||
| </div> | </div> | ||||
| <p align="center"> | <p align="center"> | ||||
| <a href="./README.md">English</a> | | <a href="./README.md">English</a> | | ||||
| <a href="./README_zh.md">简体中文</a> | <a href="./README_zh.md">简体中文</a> | ||||
| [RAGFlow](http://demo.ragflow.io) 是一款基于大型语言模型(LLM)以及深度文档理解构建的开源检索增强型生成引擎(Retrieval-Augmented Generation Engine)。RAGFlow 可以为各种规模的企业提供一套精简的 RAG 工作流程,通过生成式 AI (Generative AI)知识管理平台提供可靠的问答以及有理有据的引用。 | [RAGFlow](http://demo.ragflow.io) 是一款基于大型语言模型(LLM)以及深度文档理解构建的开源检索增强型生成引擎(Retrieval-Augmented Generation Engine)。RAGFlow 可以为各种规模的企业提供一套精简的 RAG 工作流程,通过生成式 AI (Generative AI)知识管理平台提供可靠的问答以及有理有据的引用。 | ||||
| ## 🌟 主要功能 | ## 🌟 主要功能 | ||||
| ### 🍭 **"Quality in, quality out"** | ### 🍭 **"Quality in, quality out"** | ||||
| - 基于深度文档理解,能够从各类复杂格式的非结构化数据中提取真知灼见。 | |||||
| - 真正在无限上下文(token)的场景下快速完成大海捞针测试。 | |||||
| - 基于深度文档理解,能够从各类复杂格式的非结构化数据中提取真知灼见。 | |||||
| - 真正在无限上下文(token)的场景下快速完成大海捞针测试。 | |||||
| ### 🍱 **基于模板的文本切片** | ### 🍱 **基于模板的文本切片** | ||||
| - 不仅仅是智能,更重要的是可控可解释。 | |||||
| - 多种文本模板可供选择 | |||||
| - 不仅仅是智能,更重要的是可控可解释。 | |||||
| - 多种文本模板可供选择 | |||||
| ### 🌱 **有理有据、最大程度降低幻觉(hallucination)** | ### 🌱 **有理有据、最大程度降低幻觉(hallucination)** | ||||
| - 文本切片过程可视化,支持手动调整。 | |||||
| - 有理有据:答案提供关键引用的快照并支持追根溯源。 | |||||
| - 文本切片过程可视化,支持手动调整。 | |||||
| - 有理有据:答案提供关键引用的快照并支持追根溯源。 | |||||
| ### 🍔 **兼容各类异构数据源** | ### 🍔 **兼容各类异构数据源** | ||||
| - 支持丰富的文件类型,包括 Word 文档、PPT、excel 表格、txt 文件、图片、PDF、影印件、复印件、结构化数据, 网页等。 | |||||
| - 支持丰富的文件类型,包括 Word 文档、PPT、excel 表格、txt 文件、图片、PDF、影印件、复印件、结构化数据, 网页等。 | |||||
| ### 🛀 **全程无忧、自动化的 RAG 工作流** | ### 🛀 **全程无忧、自动化的 RAG 工作流** | ||||
| - 全面优化的 RAG 工作流可以支持从个人应用乃至超大型企业的各类生态系统。 | |||||
| - 大语言模型 LLM 以及向量模型均支持配置。 | |||||
| - 基于多路召回、融合重排序。 | |||||
| - 提供易用的 API,可以轻松集成到各类企业系统。 | |||||
| - 全面优化的 RAG 工作流可以支持从个人应用乃至超大型企业的各类生态系统。 | |||||
| - 大语言模型 LLM 以及向量模型均支持配置。 | |||||
| - 基于多路召回、融合重排序。 | |||||
| - 提供易用的 API,可以轻松集成到各类企业系统。 | |||||
| ## 🔎 系统架构 | ## 🔎 系统架构 | ||||
| > 如需确认 `vm.max_map_count` 的大小: | > 如需确认 `vm.max_map_count` 的大小: | ||||
| > | > | ||||
| > ```bash | |||||
| > ```bash | |||||
| > $ sysctl vm.max_map_count | > $ sysctl vm.max_map_count | ||||
| > ``` | > ``` | ||||
| > | > | ||||
| > 核心镜像文件大约 15 GB,可能需要一定时间拉取。请耐心等待。 | > 核心镜像文件大约 15 GB,可能需要一定时间拉取。请耐心等待。 | ||||
| 4. 服务器启动成功后再次确认服务器状态: | 4. 服务器启动成功后再次确认服务器状态: | ||||
| ```bash | ```bash | ||||
| $ docker logs -f ragflow-server | $ docker logs -f ragflow-server | ||||
| ``` | ``` | ||||
| *出现以下界面提示说明服务器启动成功:* | |||||
| _出现以下界面提示说明服务器启动成功:_ | |||||
| ```bash | ```bash | ||||
| ____ ______ __ | |||||
| ____ ______ __ | |||||
| / __ \ ____ _ ____ _ / ____// /____ _ __ | / __ \ ____ _ ____ _ / ____// /____ _ __ | ||||
| / /_/ // __ `// __ `// /_ / // __ \| | /| / / | / /_/ // __ `// __ `// /_ / // __ \| | /| / / | ||||
| / _, _// /_/ // /_/ // __/ / // /_/ /| |/ |/ / | |||||
| /_/ |_| \__,_/ \__, //_/ /_/ \____/ |__/|__/ | |||||
| /____/ | |||||
| / _, _// /_/ // /_/ // __/ / // /_/ /| |/ |/ / | |||||
| /_/ |_| \__,_/ \__, //_/ /_/ \____/ |__/|__/ | |||||
| /____/ | |||||
| * Running on all addresses (0.0.0.0) | * Running on all addresses (0.0.0.0) | ||||
| * Running on http://127.0.0.1:9380 | * Running on http://127.0.0.1:9380 | ||||
| * Running on http://172.22.0.5:9380 | * Running on http://172.22.0.5:9380 | ||||
| INFO:werkzeug:Press CTRL+C to quit | INFO:werkzeug:Press CTRL+C to quit | ||||
| ``` | |||||
| ``` | |||||
| 5. 根据刚才的界面提示在你的浏览器中输入你的服务器对应的 IP 地址并登录 RAGFlow。 | 5. 根据刚才的界面提示在你的浏览器中输入你的服务器对应的 IP 地址并登录 RAGFlow。 | ||||
| > 上面这个例子中,您只需输入 http://172.22.0.5 即可:端口 9380 已通过 Docker 端口映射被设置成 80(默认的 HTTP 服务端口)。 | > 上面这个例子中,您只需输入 http://172.22.0.5 即可:端口 9380 已通过 Docker 端口映射被设置成 80(默认的 HTTP 服务端口)。 | ||||
| 7. 在 [service_conf.yaml](./docker/service_conf.yaml) 文件的 `user_default_llm` 栏配置 LLM factory,并在 `API_KEY` 栏填写和你选择的大模型相对应的 API key。 | |||||
| 6. 在 [service_conf.yaml](./docker/service_conf.yaml) 文件的 `user_default_llm` 栏配置 LLM factory,并在 `API_KEY` 栏填写和你选择的大模型相对应的 API key。 | |||||
| > 详见 [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md)。 | |||||
| _好戏开始,接着奏乐接着舞!_ | |||||
| > 详见 [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md)。 | > 详见 [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md)。 | ||||
| *好戏开始,接着奏乐接着舞!* | |||||
| _好戏开始,接着奏乐接着舞!_ | |||||
| ## 🔧 系统配置 | ## 🔧 系统配置 | ||||
| - [service_conf.yaml](./docker/service_conf.yaml):配置各类后台服务。 | - [service_conf.yaml](./docker/service_conf.yaml):配置各类后台服务。 | ||||
| - [docker-compose-CN.yml](./docker/docker-compose-CN.yml): 系统依赖该文件完成启动。 | - [docker-compose-CN.yml](./docker/docker-compose-CN.yml): 系统依赖该文件完成启动。 | ||||
| 请务必确保 [.env](./docker/.env) 文件中的变量设置与 [service_conf.yaml](./docker/service_conf.yaml) 文件中的配置保持一致! | |||||
| 请务必确保 [.env](./docker/.env) 文件中的变量设置与 [service_conf.yaml](./docker/service_conf.yaml) 文件中的配置保持一致! | |||||
| > [./docker/README](./docker/README.md) 文件提供了环境变量设置和服务配置的详细信息。请**一定要**确保 [./docker/README](./docker/README.md) 文件当中列出来的环境变量的值与 [service_conf.yaml](./docker/service_conf.yaml) 文件当中的系统配置保持一致。 | > [./docker/README](./docker/README.md) 文件提供了环境变量设置和服务配置的详细信息。请**一定要**确保 [./docker/README](./docker/README.md) 文件当中列出来的环境变量的值与 [service_conf.yaml](./docker/service_conf.yaml) 文件当中的系统配置保持一致。 | ||||
| 如需更新默认的 HTTP 服务端口(80), 可以在 [docker-compose-CN.yml](./docker/docker-compose-CN.yml) 文件中将配置 `80:80` 改为 `<YOUR_SERVING_PORT>:80`。 | 如需更新默认的 HTTP 服务端口(80), 可以在 [docker-compose-CN.yml](./docker/docker-compose-CN.yml) 文件中将配置 `80:80` 改为 `<YOUR_SERVING_PORT>:80`。 | ||||
| > 所有系统配置都需要通过系统重启生效: | > 所有系统配置都需要通过系统重启生效: | ||||
| > | |||||
| > | |||||
| > ```bash | > ```bash | ||||
| > $ docker compose up -f docker-compose-CN.yml -d | > $ docker compose up -f docker-compose-CN.yml -d | ||||
| > ``` | > ``` | ||||
| ## 🙌 贡献指南 | ## 🙌 贡献指南 | ||||
| RAGFlow 只有通过开源协作才能蓬勃发展。秉持这一精神,我们欢迎来自社区的各种贡献。如果您有意参与其中,请查阅我们的[贡献者指南](https://github.com/infiniflow/ragflow/blob/main/CONTRIBUTING.md)。 | |||||
| RAGFlow 只有通过开源协作才能蓬勃发展。秉持这一精神,我们欢迎来自社区的各种贡献。如果您有意参与其中,请查阅我们的[贡献者指南](https://github.com/infiniflow/ragflow/blob/main/CONTRIBUTING.md)。 |
| > | > | ||||
| <Space size={12} onClick={handleLogoClick} className={styles.logoWrapper}> | <Space size={12} onClick={handleLogoClick} className={styles.logoWrapper}> | ||||
| <Logo className={styles.appIcon}></Logo> | <Logo className={styles.appIcon}></Logo> | ||||
| <span className={styles.appName}>RagFlow</span> | |||||
| <span className={styles.appName}>RAGFlow</span> | |||||
| </Space> | </Space> | ||||
| <Space size={[0, 8]} wrap> | <Space size={[0, 8]} wrap> | ||||
| <Radio.Group | <Radio.Group |
| import { ReactComponent as MoonIcon } from '@/assets/svg/moon.svg'; | |||||
| import { ReactComponent as TranslationIcon } from '@/assets/svg/translation.svg'; | |||||
| import { BellOutlined, GithubOutlined } from '@ant-design/icons'; | |||||
| import { GithubOutlined } from '@ant-design/icons'; | |||||
| import { Space } from 'antd'; | import { Space } from 'antd'; | ||||
| import React from 'react'; | import React from 'react'; | ||||
| import User from '../user'; | import User from '../user'; | ||||
| <Circle> | <Circle> | ||||
| <GithubOutlined onClick={handleGithubCLick} /> | <GithubOutlined onClick={handleGithubCLick} /> | ||||
| </Circle> | </Circle> | ||||
| <Circle> | |||||
| {/* <Circle> | |||||
| <TranslationIcon /> | <TranslationIcon /> | ||||
| </Circle> | </Circle> | ||||
| <Circle> | |||||
| <BellOutlined /> | |||||
| </Circle> | |||||
| <Circle> | <Circle> | ||||
| <MoonIcon /> | <MoonIcon /> | ||||
| </Circle> | |||||
| </Circle> */} | |||||
| <User></User> | <User></User> | ||||
| </Space> | </Space> | ||||
| </div> | </div> |
| <Form.Item | <Form.Item | ||||
| label="Language" | label="Language" | ||||
| name="language" | name="language" | ||||
| initialValue={'Chinese'} | |||||
| initialValue={'English'} | |||||
| rules={[{ required: true, message: 'Please input your language!' }]} | rules={[{ required: true, message: 'Please input your language!' }]} | ||||
| > | > | ||||
| <Select placeholder="select your language"> | <Select placeholder="select your language"> |
| The résumé comes in a variety of formats, just like a person’s personality, but we often have to organize them into structured data that makes it easy to search. | The résumé comes in a variety of formats, just like a person’s personality, but we often have to organize them into structured data that makes it easy to search. | ||||
| </p><p> | </p><p> | ||||
| Instead of chunking the résumé, we parse the résumé into structured data. As a HR, you can dump all the résumé you have, | Instead of chunking the résumé, we parse the résumé into structured data. As a HR, you can dump all the résumé you have, | ||||
| the you can list all the candidates that match the qualifications just by talk with <i>'RagFlow'</i>. | |||||
| the you can list all the candidates that match the qualifications just by talk with <i>'RAGFlow'</i>. | |||||
| </p> | </p> | ||||
| `, | `, | ||||
| }, | }, |
| getUploadFileListFromBase64, | getUploadFileListFromBase64, | ||||
| normFile, | normFile, | ||||
| } from '@/utils/fileUtil'; | } from '@/utils/fileUtil'; | ||||
| import { PlusOutlined, QuestionCircleOutlined } from '@ant-design/icons'; | |||||
| import { PlusOutlined } from '@ant-design/icons'; | |||||
| import { | import { | ||||
| Button, | Button, | ||||
| Divider, | Divider, | ||||
| Select, | Select, | ||||
| Space, | Space, | ||||
| Spin, | Spin, | ||||
| Tooltip, | |||||
| Upload, | Upload, | ||||
| UploadFile, | UploadFile, | ||||
| } from 'antd'; | } from 'antd'; | ||||
| <Form.Item<FieldType> | <Form.Item<FieldType> | ||||
| label={ | label={ | ||||
| <div> | <div> | ||||
| <Space> | |||||
| Your photo | |||||
| </Space> | |||||
| <Space>Your photo</Space> | |||||
| <div>This will be displayed on your profile.</div> | <div>This will be displayed on your profile.</div> | ||||
| </div> | </div> | ||||
| } | } | ||||
| <Input disabled /> | <Input disabled /> | ||||
| </Form.Item> | </Form.Item> | ||||
| <p className={parentStyles.itemDescription}> | <p className={parentStyles.itemDescription}> | ||||
| Once registered, an account cannot be changed and can only be | |||||
| cancelled. | |||||
| Once registered, E-mail cannot be changed. | |||||
| </p> | </p> | ||||
| </Form.Item> | </Form.Item> | ||||
| <Form.Item | <Form.Item |