* feat: alter "RagFlow" to "RAGFlow" * feat: move logo style to style tag * feat: add logo-with-text.png * feat: hide TranslationIcontags/v0.1.0
| @@ -1,10 +1,9 @@ | |||
| <div align="center"> | |||
| <a href="https://demo.ragflow.io/"> | |||
| <img src="https://github.com/infiniflow/ragflow/assets/12318111/f034fb27-b3bf-401b-b213-e1dfa7448d2a" width="320" alt="ragflow logo"> | |||
| <img src="web/src/assets/logo-with-text.png" width="350" alt="ragflow logo"> | |||
| </a> | |||
| </div> | |||
| <p align="center"> | |||
| <a href="./README.md">English</a> | | |||
| <a href="./README_zh.md">简体中文</a> | |||
| @@ -26,27 +25,32 @@ | |||
| [RAGFlow](http://demo.ragflow.io) is an open-source, Retrieval-Augmented Generation engine built on large language models (LLM), deep document understanding, and multiple recall. It offers a streamlined RAG workflow for businesses of any scale, providing truthful responses with solid citations through a generative AI knowledge management platform. | |||
| ## 🌟 Key Features | |||
| ### 🍭 **"Quality in, quality out"** | |||
| - Deep document understanding-based knowledge extraction from unstructured data with complicated formats. | |||
| - Finds "needle in a data haystack" of literally unlimited tokens. | |||
| - Deep document understanding-based knowledge extraction from unstructured data with complicated formats. | |||
| - Finds "needle in a data haystack" of literally unlimited tokens. | |||
| ### 🍱 **Template-based chunking** | |||
| - Intelligent and explainable. | |||
| - Plenty of template options to choose from. | |||
| - Intelligent and explainable. | |||
| - Plenty of template options to choose from. | |||
| ### 🌱 **Grounded citations with reduced hallucinations** | |||
| - Visualization of text chunking to allow human intervention. | |||
| - Quick view of the key references and traceable citations to support grounded answers. | |||
| - Visualization of text chunking to allow human intervention. | |||
| - Quick view of the key references and traceable citations to support grounded answers. | |||
| ### 🍔 **Compatibility with heterogeneous data sources** | |||
| - Supports Word, slides, excel, txt, images, scanned copies, structured data, web pages, and more. | |||
| - Supports Word, slides, excel, txt, images, scanned copies, structured data, web pages, and more. | |||
| ### 🛀 **Automated and effortless RAG workflow** | |||
| - Streamlined RAG orchestration catered to both personal and large businesses. | |||
| - Configurable LLMs as well as embedding models. | |||
| - Multiple recall paired with fused re-ranking. | |||
| - Intuitive APIs for seamless integration with business. | |||
| - Streamlined RAG orchestration catered to both personal and large businesses. | |||
| - Configurable LLMs as well as embedding models. | |||
| - Multiple recall paired with fused re-ranking. | |||
| - Intuitive APIs for seamless integration with business. | |||
| ## 🔎 System Architecture | |||
| @@ -65,11 +69,11 @@ | |||
| ### 🚀 Start up the server | |||
| 1. Ensure `vm.max_map_count` > 65535: | |||
| 1. Ensure `vm.max_map_count` > 65535: | |||
| > To check the value of `vm.max_map_count`: | |||
| > | |||
| > ```bash | |||
| > ```bash | |||
| > $ sysctl vm.max_map_count | |||
| > ``` | |||
| > | |||
| @@ -92,7 +96,7 @@ | |||
| $ git clone https://github.com/infiniflow/ragflow.git | |||
| ``` | |||
| 3. Build the pre-built Docker images and start up the server: | |||
| 3. Build the pre-built Docker images and start up the server: | |||
| ```bash | |||
| $ cd ragflow/docker | |||
| @@ -102,31 +106,33 @@ | |||
| > The core image is about 15 GB in size and may take a while to load. | |||
| 4. Check the server status after having the server up and running: | |||
| ```bash | |||
| $ docker logs -f ragflow-server | |||
| ``` | |||
| *The following output confirms a successful launch of the system:* | |||
| _The following output confirms a successful launch of the system:_ | |||
| ```bash | |||
| ____ ______ __ | |||
| ____ ______ __ | |||
| / __ \ ____ _ ____ _ / ____// /____ _ __ | |||
| / /_/ // __ `// __ `// /_ / // __ \| | /| / / | |||
| / _, _// /_/ // /_/ // __/ / // /_/ /| |/ |/ / | |||
| /_/ |_| \__,_/ \__, //_/ /_/ \____/ |__/|__/ | |||
| /____/ | |||
| / _, _// /_/ // /_/ // __/ / // /_/ /| |/ |/ / | |||
| /_/ |_| \__,_/ \__, //_/ /_/ \____/ |__/|__/ | |||
| /____/ | |||
| * Running on all addresses (0.0.0.0) | |||
| * Running on http://127.0.0.1:9380 | |||
| * Running on http://172.22.0.5:9380 | |||
| INFO:werkzeug:Press CTRL+C to quit | |||
| ``` | |||
| ``` | |||
| 5. In your web browser, enter the IP address of your server as prompted and log in to RAGFlow. | |||
| 6. In [service_conf.yaml](./docker/service_conf.yaml), select the desired LLM factory in `user_default_llm` and update the `API_KEY` field with the corresponding API key. | |||
| > See [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md) for more information. | |||
| *The show is now on!* | |||
| _The show is now on!_ | |||
| ## 🔧 Configurations | |||
| @@ -136,14 +142,14 @@ When it comes to system configurations, you will need to manage the following fi | |||
| - [service_conf.yaml](./docker/service_conf.yaml): Configures the back-end services. | |||
| - [docker-compose.yml](./docker/docker-compose.yml): The system relies on [docker-compose.yml](./docker/docker-compose.yml) to start up. | |||
| You must ensure that changes to the [.env](./docker/.env) file are in line with what are in the [service_conf.yaml](./docker/service_conf.yaml) file. | |||
| You must ensure that changes to the [.env](./docker/.env) file are in line with what are in the [service_conf.yaml](./docker/service_conf.yaml) file. | |||
| > The [./docker/README](./docker/README.md) file provides a detailed description of the environment settings and service configurations, and you are REQUIRED to ensure that all environment settings listed in the [./docker/README](./docker/README.md) file are aligned with the corresponding configurations in the [service_conf.yaml](./docker/service_conf.yaml) file. | |||
| To update the default serving port (80), go to [docker-compose.yml](./docker/docker-compose.yml) and change `80:80` to `<YOUR_SERVING_PORT>:80`. | |||
| > Updates to all system configurations require a system reboot to take effect: | |||
| > | |||
| > | |||
| > ```bash | |||
| > $ docker-compose up -d | |||
| > ``` | |||
| @@ -171,4 +177,4 @@ See the [RAGFlow Roadmap 2024](https://github.com/infiniflow/ragflow/issues/162) | |||
| ## 🙌 Contributing | |||
| RAGFlow flourishes via open-source collaboration. In this spirit, we embrace diverse contributions from the community. If you would like to be a part, review our [Contribution Guidelines](https://github.com/infiniflow/ragflow/blob/main/CONTRIBUTING.md) first. | |||
| RAGFlow flourishes via open-source collaboration. In this spirit, we embrace diverse contributions from the community. If you would like to be a part, review our [Contribution Guidelines](https://github.com/infiniflow/ragflow/blob/main/CONTRIBUTING.md) first. | |||
| @@ -1,10 +1,9 @@ | |||
| <div align="center"> | |||
| <a href="https://demo.ragflow.io/"> | |||
| <img src="https://github.com/infiniflow/ragflow/assets/12318111/f034fb27-b3bf-401b-b213-e1dfa7448d2a" width="320" alt="ragflow logo"> | |||
| <img src="web/src/assets/logo-with-text.png" width="350" alt="ragflow logo"> | |||
| </a> | |||
| </div> | |||
| <p align="center"> | |||
| <a href="./README.md">English</a> | | |||
| <a href="./README_zh.md">简体中文</a> | |||
| @@ -26,27 +25,32 @@ | |||
| [RAGFlow](http://demo.ragflow.io) 是一款基于大型语言模型(LLM)以及深度文档理解构建的开源检索增强型生成引擎(Retrieval-Augmented Generation Engine)。RAGFlow 可以为各种规模的企业提供一套精简的 RAG 工作流程,通过生成式 AI (Generative AI)知识管理平台提供可靠的问答以及有理有据的引用。 | |||
| ## 🌟 主要功能 | |||
| ### 🍭 **"Quality in, quality out"** | |||
| - 基于深度文档理解,能够从各类复杂格式的非结构化数据中提取真知灼见。 | |||
| - 真正在无限上下文(token)的场景下快速完成大海捞针测试。 | |||
| - 基于深度文档理解,能够从各类复杂格式的非结构化数据中提取真知灼见。 | |||
| - 真正在无限上下文(token)的场景下快速完成大海捞针测试。 | |||
| ### 🍱 **基于模板的文本切片** | |||
| - 不仅仅是智能,更重要的是可控可解释。 | |||
| - 多种文本模板可供选择 | |||
| - 不仅仅是智能,更重要的是可控可解释。 | |||
| - 多种文本模板可供选择 | |||
| ### 🌱 **有理有据、最大程度降低幻觉(hallucination)** | |||
| - 文本切片过程可视化,支持手动调整。 | |||
| - 有理有据:答案提供关键引用的快照并支持追根溯源。 | |||
| - 文本切片过程可视化,支持手动调整。 | |||
| - 有理有据:答案提供关键引用的快照并支持追根溯源。 | |||
| ### 🍔 **兼容各类异构数据源** | |||
| - 支持丰富的文件类型,包括 Word 文档、PPT、excel 表格、txt 文件、图片、PDF、影印件、复印件、结构化数据, 网页等。 | |||
| - 支持丰富的文件类型,包括 Word 文档、PPT、excel 表格、txt 文件、图片、PDF、影印件、复印件、结构化数据, 网页等。 | |||
| ### 🛀 **全程无忧、自动化的 RAG 工作流** | |||
| - 全面优化的 RAG 工作流可以支持从个人应用乃至超大型企业的各类生态系统。 | |||
| - 大语言模型 LLM 以及向量模型均支持配置。 | |||
| - 基于多路召回、融合重排序。 | |||
| - 提供易用的 API,可以轻松集成到各类企业系统。 | |||
| - 全面优化的 RAG 工作流可以支持从个人应用乃至超大型企业的各类生态系统。 | |||
| - 大语言模型 LLM 以及向量模型均支持配置。 | |||
| - 基于多路召回、融合重排序。 | |||
| - 提供易用的 API,可以轻松集成到各类企业系统。 | |||
| ## 🔎 系统架构 | |||
| @@ -69,7 +73,7 @@ | |||
| > 如需确认 `vm.max_map_count` 的大小: | |||
| > | |||
| > ```bash | |||
| > ```bash | |||
| > $ sysctl vm.max_map_count | |||
| > ``` | |||
| > | |||
| @@ -102,32 +106,38 @@ | |||
| > 核心镜像文件大约 15 GB,可能需要一定时间拉取。请耐心等待。 | |||
| 4. 服务器启动成功后再次确认服务器状态: | |||
| ```bash | |||
| $ docker logs -f ragflow-server | |||
| ``` | |||
| *出现以下界面提示说明服务器启动成功:* | |||
| _出现以下界面提示说明服务器启动成功:_ | |||
| ```bash | |||
| ____ ______ __ | |||
| ____ ______ __ | |||
| / __ \ ____ _ ____ _ / ____// /____ _ __ | |||
| / /_/ // __ `// __ `// /_ / // __ \| | /| / / | |||
| / _, _// /_/ // /_/ // __/ / // /_/ /| |/ |/ / | |||
| /_/ |_| \__,_/ \__, //_/ /_/ \____/ |__/|__/ | |||
| /____/ | |||
| / _, _// /_/ // /_/ // __/ / // /_/ /| |/ |/ / | |||
| /_/ |_| \__,_/ \__, //_/ /_/ \____/ |__/|__/ | |||
| /____/ | |||
| * Running on all addresses (0.0.0.0) | |||
| * Running on http://127.0.0.1:9380 | |||
| * Running on http://172.22.0.5:9380 | |||
| INFO:werkzeug:Press CTRL+C to quit | |||
| ``` | |||
| ``` | |||
| 5. 根据刚才的界面提示在你的浏览器中输入你的服务器对应的 IP 地址并登录 RAGFlow。 | |||
| > 上面这个例子中,您只需输入 http://172.22.0.5 即可:端口 9380 已通过 Docker 端口映射被设置成 80(默认的 HTTP 服务端口)。 | |||
| 7. 在 [service_conf.yaml](./docker/service_conf.yaml) 文件的 `user_default_llm` 栏配置 LLM factory,并在 `API_KEY` 栏填写和你选择的大模型相对应的 API key。 | |||
| 6. 在 [service_conf.yaml](./docker/service_conf.yaml) 文件的 `user_default_llm` 栏配置 LLM factory,并在 `API_KEY` 栏填写和你选择的大模型相对应的 API key。 | |||
| > 详见 [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md)。 | |||
| _好戏开始,接着奏乐接着舞!_ | |||
| > 详见 [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md)。 | |||
| *好戏开始,接着奏乐接着舞!* | |||
| _好戏开始,接着奏乐接着舞!_ | |||
| ## 🔧 系统配置 | |||
| @@ -137,14 +147,14 @@ | |||
| - [service_conf.yaml](./docker/service_conf.yaml):配置各类后台服务。 | |||
| - [docker-compose-CN.yml](./docker/docker-compose-CN.yml): 系统依赖该文件完成启动。 | |||
| 请务必确保 [.env](./docker/.env) 文件中的变量设置与 [service_conf.yaml](./docker/service_conf.yaml) 文件中的配置保持一致! | |||
| 请务必确保 [.env](./docker/.env) 文件中的变量设置与 [service_conf.yaml](./docker/service_conf.yaml) 文件中的配置保持一致! | |||
| > [./docker/README](./docker/README.md) 文件提供了环境变量设置和服务配置的详细信息。请**一定要**确保 [./docker/README](./docker/README.md) 文件当中列出来的环境变量的值与 [service_conf.yaml](./docker/service_conf.yaml) 文件当中的系统配置保持一致。 | |||
| 如需更新默认的 HTTP 服务端口(80), 可以在 [docker-compose-CN.yml](./docker/docker-compose-CN.yml) 文件中将配置 `80:80` 改为 `<YOUR_SERVING_PORT>:80`。 | |||
| > 所有系统配置都需要通过系统重启生效: | |||
| > | |||
| > | |||
| > ```bash | |||
| > $ docker compose up -f docker-compose-CN.yml -d | |||
| > ``` | |||
| @@ -172,4 +182,4 @@ $ docker compose up -d | |||
| ## 🙌 贡献指南 | |||
| RAGFlow 只有通过开源协作才能蓬勃发展。秉持这一精神,我们欢迎来自社区的各种贡献。如果您有意参与其中,请查阅我们的[贡献者指南](https://github.com/infiniflow/ragflow/blob/main/CONTRIBUTING.md)。 | |||
| RAGFlow 只有通过开源协作才能蓬勃发展。秉持这一精神,我们欢迎来自社区的各种贡献。如果您有意参与其中,请查阅我们的[贡献者指南](https://github.com/infiniflow/ragflow/blob/main/CONTRIBUTING.md)。 | |||
| @@ -55,7 +55,7 @@ const RagHeader = () => { | |||
| > | |||
| <Space size={12} onClick={handleLogoClick} className={styles.logoWrapper}> | |||
| <Logo className={styles.appIcon}></Logo> | |||
| <span className={styles.appName}>RagFlow</span> | |||
| <span className={styles.appName}>RAGFlow</span> | |||
| </Space> | |||
| <Space size={[0, 8]} wrap> | |||
| <Radio.Group | |||
| @@ -1,6 +1,4 @@ | |||
| import { ReactComponent as MoonIcon } from '@/assets/svg/moon.svg'; | |||
| import { ReactComponent as TranslationIcon } from '@/assets/svg/translation.svg'; | |||
| import { BellOutlined, GithubOutlined } from '@ant-design/icons'; | |||
| import { GithubOutlined } from '@ant-design/icons'; | |||
| import { Space } from 'antd'; | |||
| import React from 'react'; | |||
| import User from '../user'; | |||
| @@ -21,15 +19,12 @@ const RightToolBar = () => { | |||
| <Circle> | |||
| <GithubOutlined onClick={handleGithubCLick} /> | |||
| </Circle> | |||
| <Circle> | |||
| {/* <Circle> | |||
| <TranslationIcon /> | |||
| </Circle> | |||
| <Circle> | |||
| <BellOutlined /> | |||
| </Circle> | |||
| <Circle> | |||
| <MoonIcon /> | |||
| </Circle> | |||
| </Circle> */} | |||
| <User></User> | |||
| </Space> | |||
| </div> | |||
| @@ -62,7 +62,7 @@ const ConfigurationForm = ({ form }: { form: FormInstance }) => { | |||
| <Form.Item | |||
| label="Language" | |||
| name="language" | |||
| initialValue={'Chinese'} | |||
| initialValue={'English'} | |||
| rules={[{ required: true, message: 'Please input your language!' }]} | |||
| > | |||
| <Select placeholder="select your language"> | |||
| @@ -81,7 +81,7 @@ export const TextMap = { | |||
| The résumé comes in a variety of formats, just like a person’s personality, but we often have to organize them into structured data that makes it easy to search. | |||
| </p><p> | |||
| Instead of chunking the résumé, we parse the résumé into structured data. As a HR, you can dump all the résumé you have, | |||
| the you can list all the candidates that match the qualifications just by talk with <i>'RagFlow'</i>. | |||
| the you can list all the candidates that match the qualifications just by talk with <i>'RAGFlow'</i>. | |||
| </p> | |||
| `, | |||
| }, | |||
| @@ -8,7 +8,7 @@ import { | |||
| getUploadFileListFromBase64, | |||
| normFile, | |||
| } from '@/utils/fileUtil'; | |||
| import { PlusOutlined, QuestionCircleOutlined } from '@ant-design/icons'; | |||
| import { PlusOutlined } from '@ant-design/icons'; | |||
| import { | |||
| Button, | |||
| Divider, | |||
| @@ -17,7 +17,6 @@ import { | |||
| Select, | |||
| Space, | |||
| Spin, | |||
| Tooltip, | |||
| Upload, | |||
| UploadFile, | |||
| } from 'antd'; | |||
| @@ -108,9 +107,7 @@ const UserSettingProfile = () => { | |||
| <Form.Item<FieldType> | |||
| label={ | |||
| <div> | |||
| <Space> | |||
| Your photo | |||
| </Space> | |||
| <Space>Your photo</Space> | |||
| <div>This will be displayed on your profile.</div> | |||
| </div> | |||
| } | |||
| @@ -177,8 +174,7 @@ const UserSettingProfile = () => { | |||
| <Input disabled /> | |||
| </Form.Item> | |||
| <p className={parentStyles.itemDescription}> | |||
| Once registered, an account cannot be changed and can only be | |||
| cancelled. | |||
| Once registered, E-mail cannot be changed. | |||
| </p> | |||
| </Form.Item> | |||
| <Form.Item | |||