| @@ -309,13 +309,13 @@ def use_sql(question, field_map, tenant_id, chat_mdl): | |||
| # compose markdown table | |||
| clmns = "|"+"|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"], tbl["columns"][i]["name"])) for i in clmn_idx]) + ("|原文|" if docid_idx and docid_idx else "|") | |||
| line = "|"+"|".join(["------" for _ in range(len(clmn_idx))]) + ("|------|" if docid_idx and docid_idx else "") | |||
| line = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}\|", "|", line) | |||
| rows = ["|"+"|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") + "|" for r in tbl["rows"]] | |||
| if not docid_idx or not docnm_idx: | |||
| chat_logger.warning("SQL missing field: " + sql) | |||
| return "\n".join([clmns, line, "\n".join(rows)]), [] | |||
| rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)]) | |||
| rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows) | |||
| docid_idx = list(docid_idx)[0] | |||
| docnm_idx = list(docnm_idx)[0] | |||
| return "\n".join([clmns, line, rows]), [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]] | |||
| @@ -39,36 +39,40 @@ def factories(): | |||
| def set_api_key(): | |||
| req = request.json | |||
| # test if api key works | |||
| chat_passed = False | |||
| factory = req["llm_factory"] | |||
| msg = "" | |||
| for llm in LLMService.query(fid=req["llm_factory"]): | |||
| for llm in LLMService.query(fid=factory): | |||
| if llm.model_type == LLMType.EMBEDDING.value: | |||
| mdl = EmbeddingModel[req["llm_factory"]]( | |||
| mdl = EmbeddingModel[factory]( | |||
| req["api_key"], llm.llm_name) | |||
| try: | |||
| arr, tc = mdl.encode(["Test if the api key is available"]) | |||
| if len(arr[0]) == 0 or tc ==0: raise Exception("Fail") | |||
| except Exception as e: | |||
| msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." | |||
| elif llm.model_type == LLMType.CHAT.value: | |||
| mdl = ChatModel[req["llm_factory"]]( | |||
| elif not chat_passed and llm.model_type == LLMType.CHAT.value: | |||
| mdl = ChatModel[factory]( | |||
| req["api_key"], llm.llm_name) | |||
| try: | |||
| m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {"temperature": 0.9}) | |||
| if not tc: raise Exception(m) | |||
| chat_passed = True | |||
| except Exception as e: | |||
| msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(e) | |||
| if msg: return get_data_error_result(retmsg=msg) | |||
| llm = { | |||
| "tenant_id": current_user.id, | |||
| "llm_factory": req["llm_factory"], | |||
| "api_key": req["api_key"] | |||
| } | |||
| for n in ["model_type", "llm_name"]: | |||
| if n in req: llm[n] = req[n] | |||
| TenantLLMService.filter_update([TenantLLM.tenant_id==llm["tenant_id"], TenantLLM.llm_factory==llm["llm_factory"]], llm) | |||
| if not TenantLLMService.filter_update([TenantLLM.tenant_id==current_user.id, TenantLLM.llm_factory==factory], llm): | |||
| for llm in LLMService.query(fid=factory): | |||
| TenantLLMService.save(tenant_id=current_user.id, llm_factory=factory, llm_name=llm.llm_name, model_type=llm.model_type, api_key=req["api_key"]) | |||
| return get_json_result(data=True) | |||
| @@ -429,7 +429,7 @@ class LLMFactories(DataBaseModel): | |||
| class LLM(DataBaseModel): | |||
| # LLMs dictionary | |||
| llm_name = CharField(max_length=128, null=False, help_text="LLM name", index=True) | |||
| llm_name = CharField(max_length=128, null=False, help_text="LLM name", index=True, primary_key=True) | |||
| model_type = CharField(max_length=128, null=False, help_text="LLM, Text Embedding, Image2Text, ASR") | |||
| fid = CharField(max_length=128, null=False, help_text="LLM factory id") | |||
| max_tokens = IntegerField(default=0) | |||
| @@ -73,41 +73,41 @@ def init_superuser(): | |||
| print("\33[91m【ERROR】\33[0m:", " '{}' dosen't work!".format(tenant["embd_id"])) | |||
| factory_infos = [{ | |||
| "name": "OpenAI", | |||
| "logo": "", | |||
| "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION", | |||
| "status": "1", | |||
| },{ | |||
| "name": "通义千问", | |||
| "logo": "", | |||
| "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION", | |||
| "status": "1", | |||
| },{ | |||
| "name": "智谱AI", | |||
| "logo": "", | |||
| "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION", | |||
| "status": "1", | |||
| }, | |||
| { | |||
| "name": "Local", | |||
| "logo": "", | |||
| "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION", | |||
| "status": "1", | |||
| },{ | |||
| "name": "Moonshot", | |||
| "logo": "", | |||
| "tags": "LLM,TEXT EMBEDDING", | |||
| "status": "1", | |||
| } | |||
| # { | |||
| # "name": "文心一言", | |||
| # "logo": "", | |||
| # "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION", | |||
| # "status": "1", | |||
| # }, | |||
| ] | |||
| def init_llm_factory(): | |||
| factory_infos = [{ | |||
| "name": "OpenAI", | |||
| "logo": "", | |||
| "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION", | |||
| "status": "1", | |||
| },{ | |||
| "name": "通义千问", | |||
| "logo": "", | |||
| "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION", | |||
| "status": "1", | |||
| },{ | |||
| "name": "智谱AI", | |||
| "logo": "", | |||
| "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION", | |||
| "status": "1", | |||
| }, | |||
| { | |||
| "name": "Local", | |||
| "logo": "", | |||
| "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION", | |||
| "status": "1", | |||
| },{ | |||
| "name": "Moonshot", | |||
| "logo": "", | |||
| "tags": "LLM,TEXT EMBEDDING", | |||
| "status": "1", | |||
| } | |||
| # { | |||
| # "name": "文心一言", | |||
| # "logo": "", | |||
| # "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION", | |||
| # "status": "1", | |||
| # }, | |||
| ] | |||
| llm_infos = [ | |||
| # ---------------------- OpenAI ------------------------ | |||
| { | |||
| @@ -260,21 +260,30 @@ def init_llm_factory(): | |||
| }, | |||
| ] | |||
| for info in factory_infos: | |||
| LLMFactoriesService.save(**info) | |||
| try: | |||
| LLMFactoriesService.save(**info) | |||
| except Exception as e: | |||
| pass | |||
| for info in llm_infos: | |||
| LLMService.save(**info) | |||
| try: | |||
| LLMService.save(**info) | |||
| except Exception as e: | |||
| pass | |||
| def init_web_data(): | |||
| start_time = time.time() | |||
| if not LLMService.get_all().count():init_llm_factory() | |||
| if LLMFactoriesService.get_all().count() != len(factory_infos): | |||
| init_llm_factory() | |||
| if not UserService.get_all().count(): | |||
| init_superuser() | |||
| print("init web data success:{}".format(time.time() - start_time)) | |||
| if __name__ == '__main__': | |||
| init_web_db() | |||
| init_web_data() | |||
| init_web_data() | |||
| add_tenant_llm() | |||
| @@ -53,7 +53,7 @@ class TenantLLMService(CommonService): | |||
| cls.model.used_tokens | |||
| ] | |||
| objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where( | |||
| cls.model.tenant_id == tenant_id).dicts() | |||
| cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts() | |||
| return list(objs) | |||
| @@ -54,6 +54,21 @@ class MoonshotChat(GptTurbo): | |||
| self.client = OpenAI(api_key=key, base_url="https://api.moonshot.cn/v1",) | |||
| self.model_name = model_name | |||
| def chat(self, system, history, gen_conf): | |||
| if system: history.insert(0, {"role": "system", "content": system}) | |||
| try: | |||
| response = self.client.chat.completions.create( | |||
| model=self.model_name, | |||
| messages=history, | |||
| **gen_conf) | |||
| ans = response.choices[0].message.content.strip() | |||
| if response.choices[0].finish_reason == "length": | |||
| ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |||
| [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" | |||
| return ans, response.usage.completion_tokens | |||
| except openai.APIError as e: | |||
| return "**ERROR**: "+str(e), 0 | |||
| from dashscope import Generation | |||
| class QWenChat(Base): | |||