Kaynağa Gözat

Refine error message while embedding model error, (#5490)

### What problem does this PR solve?

### Type of change

- [x] Refactoring
tags/v0.17.0
Kevin Hu 8 ay önce
ebeveyn
işleme
21943ce0e2
No account linked to committer's email address
1 değiştirilmiş dosya ile 2 ekleme ve 2 silme
  1. 2
    2
      rag/svr/task_executor.py

+ 2
- 2
rag/svr/task_executor.py Dosyayı Görüntüle

try: try:
# bind embedding model # bind embedding model
embedding_model = LLMBundle(task_tenant_id, LLMType.EMBEDDING, llm_name=task_embedding_id, lang=task_language) embedding_model = LLMBundle(task_tenant_id, LLMType.EMBEDDING, llm_name=task_embedding_id, lang=task_language)
vts, _ = embedding_model.encode(["ok"])
vector_size = len(vts[0])
except Exception as e: except Exception as e:
error_message = f'Fail to bind embedding model: {str(e)}' error_message = f'Fail to bind embedding model: {str(e)}'
progress_callback(-1, msg=error_message) progress_callback(-1, msg=error_message)
logging.exception(error_message) logging.exception(error_message)
raise raise


vts, _ = embedding_model.encode(["ok"])
vector_size = len(vts[0])
init_kb(task, vector_size) init_kb(task, vector_size)


# Either using RAPTOR or Standard chunking methods # Either using RAPTOR or Standard chunking methods

Loading…
İptal
Kaydet