### What problem does this PR solve? Fix some issues in API and test ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue) Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>tags/v0.13.0
| @@ -30,9 +30,9 @@ from api.utils.api_utils import get_result | |||
| @token_required | |||
| def create(tenant_id): | |||
| req=request.json | |||
| ids= req.get("datasets") | |||
| ids= req.get("dataset_ids") | |||
| if not ids: | |||
| return get_error_data_result(retmsg="`datasets` is required") | |||
| return get_error_data_result(retmsg="`dataset_ids` is required") | |||
| for kb_id in ids: | |||
| kbs = KnowledgebaseService.query(id=kb_id,tenant_id=tenant_id) | |||
| if not kbs: | |||
| @@ -138,7 +138,7 @@ def create(tenant_id): | |||
| res["llm"] = res.pop("llm_setting") | |||
| res["llm"]["model_name"] = res.pop("llm_id") | |||
| del res["kb_ids"] | |||
| res["datasets"] = req["datasets"] | |||
| res["dataset_ids"] = req["dataset_ids"] | |||
| res["avatar"] = res.pop("icon") | |||
| return get_result(data=res) | |||
| @@ -148,8 +148,8 @@ def update(tenant_id,chat_id): | |||
| if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value): | |||
| return get_error_data_result(retmsg='You do not own the chat') | |||
| req =request.json | |||
| ids = req.get("datasets") | |||
| if "datasets" in req: | |||
| ids = req.get("dataset_ids") | |||
| if "dataset_ids" in req: | |||
| if not ids: | |||
| return get_error_data_result("`datasets` can't be empty") | |||
| if ids: | |||
| @@ -214,8 +214,8 @@ def update(tenant_id,chat_id): | |||
| # avatar | |||
| if "avatar" in req: | |||
| req["icon"] = req.pop("avatar") | |||
| if "datasets" in req: | |||
| req.pop("datasets") | |||
| if "dataset_ids" in req: | |||
| req.pop("dataset_ids") | |||
| if not DialogService.update_by_id(chat_id, req): | |||
| return get_error_data_result(retmsg="Chat not found!") | |||
| return get_result() | |||
| @@ -550,33 +550,32 @@ def update_chunk(tenant_id,dataset_id,document_id,chunk_id): | |||
| @token_required | |||
| def retrieval_test(tenant_id): | |||
| req = request.json | |||
| if not req.get("datasets"): | |||
| if not req.get("dataset_ids"): | |||
| return get_error_data_result("`datasets` is required.") | |||
| kb_ids = req["datasets"] | |||
| kb_ids = req["dataset_ids"] | |||
| if not isinstance(kb_ids,list): | |||
| return get_error_data_result("`datasets` should be a list") | |||
| kbs = KnowledgebaseService.get_by_ids(kb_ids) | |||
| for id in kb_ids: | |||
| if not KnowledgebaseService.query(id=id,tenant_id=tenant_id): | |||
| return get_error_data_result(f"You don't own the dataset {id}.") | |||
| embd_nms = list(set([kb.embd_id for kb in kbs])) | |||
| if len(embd_nms) != 1: | |||
| return get_result( | |||
| retmsg='Knowledge bases use different embedding models or does not exist."', | |||
| retmsg='Datasets use different embedding models."', | |||
| retcode=RetCode.AUTHENTICATION_ERROR) | |||
| if isinstance(kb_ids, str): kb_ids = [kb_ids] | |||
| for id in kb_ids: | |||
| if not KnowledgebaseService.query(id=id,tenant_id=tenant_id): | |||
| return get_error_data_result(f"You don't own the dataset {id}.") | |||
| if "question" not in req: | |||
| return get_error_data_result("`question` is required.") | |||
| page = int(req.get("offset", 1)) | |||
| size = int(req.get("limit", 1024)) | |||
| question = req["question"] | |||
| doc_ids = req.get("documents", []) | |||
| if not isinstance(req.get("documents"),list): | |||
| doc_ids = req.get("document_ids", []) | |||
| if not isinstance(doc_ids,list): | |||
| return get_error_data_result("`documents` should be a list") | |||
| doc_ids_list=KnowledgebaseService.list_documents_by_ids(kb_ids) | |||
| for doc_id in doc_ids: | |||
| if doc_id not in doc_ids_list: | |||
| return get_error_data_result(f"You don't own the document {doc_id}") | |||
| return get_error_data_result(f"The datasets don't own the document {doc_id}") | |||
| similarity_threshold = float(req.get("similarity_threshold", 0.2)) | |||
| vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3)) | |||
| top = int(req.get("top_k", 1024)) | |||
| @@ -9,7 +9,7 @@ class Chat(Base): | |||
| self.id = "" | |||
| self.name = "assistant" | |||
| self.avatar = "path/to/avatar" | |||
| self.datasets = ["kb1"] | |||
| self.dataset_ids = ["kb1"] | |||
| self.llm = Chat.LLM(rag, {}) | |||
| self.prompt = Chat.Prompt(rag, {}) | |||
| super().__init__(rag, res_dict) | |||
| @@ -64,8 +64,8 @@ class RAGFlow: | |||
| return DataSet(self, res["data"]) | |||
| raise Exception(res["message"]) | |||
| def delete_datasets(self, ids: List[str] = None, names: List[str] = None): | |||
| res = self.delete("/dataset",{"ids": ids, "names": names}) | |||
| def delete_datasets(self, ids: List[str]): | |||
| res = self.delete("/dataset",{"ids": ids}) | |||
| res=res.json() | |||
| if res.get("code") != 0: | |||
| raise Exception(res["message"]) | |||
| @@ -89,11 +89,11 @@ class RAGFlow: | |||
| return result_list | |||
| raise Exception(res["message"]) | |||
| def create_chat(self, name: str, avatar: str = "", datasets: List[DataSet] = [], | |||
| def create_chat(self, name: str, avatar: str = "", dataset_ids: List[str] = [], | |||
| llm: Chat.LLM = None, prompt: Chat.Prompt = None) -> Chat: | |||
| dataset_list = [] | |||
| for dataset in datasets: | |||
| dataset_list.append(dataset.id) | |||
| for id in dataset_ids: | |||
| dataset_list.append(id) | |||
| if llm is None: | |||
| llm = Chat.LLM(self, {"model_name": None, | |||
| @@ -126,7 +126,7 @@ class RAGFlow: | |||
| temp_dict = {"name": name, | |||
| "avatar": avatar, | |||
| "datasets": dataset_list, | |||
| "dataset_ids": dataset_list, | |||
| "llm": llm.to_json(), | |||
| "prompt": prompt.to_json()} | |||
| res = self.post("/chat", temp_dict) | |||
| @@ -154,7 +154,9 @@ class RAGFlow: | |||
| raise Exception(res["message"]) | |||
| def retrieve(self, datasets,documents,question="", offset=1, limit=1024, similarity_threshold=0.2,vector_similarity_weight=0.3,top_k=1024,rerank_id:str=None,keyword:bool=False,): | |||
| def retrieve(self, dataset_ids, document_ids=None, question="", offset=1, limit=1024, similarity_threshold=0.2, vector_similarity_weight=0.3, top_k=1024, rerank_id:str=None, keyword:bool=False, ): | |||
| if document_ids is None: | |||
| document_ids = [] | |||
| data_json ={ | |||
| "offset": offset, | |||
| "limit": limit, | |||
| @@ -164,10 +166,9 @@ class RAGFlow: | |||
| "rerank_id": rerank_id, | |||
| "keyword": keyword, | |||
| "question": question, | |||
| "datasets": datasets, | |||
| "documents": documents | |||
| "datasets": dataset_ids, | |||
| "documents": document_ids | |||
| } | |||
| # Send a POST request to the backend service (using requests library as an example, actual implementation may vary) | |||
| res = self.post(f'/retrieval',json=data_json) | |||
| res = res.json() | |||
| @@ -1,5 +1,4 @@ | |||
| from ragflow import RAGFlow, Chat | |||
| import time | |||
| HOST_ADDRESS = 'http://127.0.0.1:9380' | |||
| def test_create_chat_with_name(get_api_key_fixture): | |||
| @@ -12,13 +11,10 @@ def test_create_chat_with_name(get_api_key_fixture): | |||
| document = {"displayed_name":displayed_name,"blob":blob} | |||
| documents = [] | |||
| documents.append(document) | |||
| doc_ids = [] | |||
| docs= kb.upload_documents(documents) | |||
| for doc in docs: | |||
| doc_ids.append(doc.id) | |||
| kb.async_parse_documents(doc_ids) | |||
| time.sleep(60) | |||
| rag.create_chat("test_create", datasets=[kb]) | |||
| doc.add_chunk("This is a test to add chunk") | |||
| rag.create_chat("test_create", dataset_ids=[kb.id]) | |||
| def test_update_chat_with_name(get_api_key_fixture): | |||
| @@ -31,13 +27,10 @@ def test_update_chat_with_name(get_api_key_fixture): | |||
| document = {"displayed_name": displayed_name, "blob": blob} | |||
| documents = [] | |||
| documents.append(document) | |||
| doc_ids = [] | |||
| docs = kb.upload_documents(documents) | |||
| for doc in docs: | |||
| doc_ids.append(doc.id) | |||
| kb.async_parse_documents(doc_ids) | |||
| time.sleep(60) | |||
| chat = rag.create_chat("test_update", datasets=[kb]) | |||
| doc.add_chunk("This is a test to add chunk") | |||
| chat = rag.create_chat("test_update", dataset_ids=[kb.id]) | |||
| chat.update({"name": "new_chat"}) | |||
| @@ -51,17 +44,27 @@ def test_delete_chats_with_success(get_api_key_fixture): | |||
| document = {"displayed_name": displayed_name, "blob": blob} | |||
| documents = [] | |||
| documents.append(document) | |||
| doc_ids = [] | |||
| docs = kb.upload_documents(documents) | |||
| for doc in docs: | |||
| doc_ids.append(doc.id) | |||
| kb.async_parse_documents(doc_ids) | |||
| time.sleep(60) | |||
| chat = rag.create_chat("test_delete", datasets=[kb]) | |||
| doc.add_chunk("This is a test to add chunk") | |||
| chat = rag.create_chat("test_delete", dataset_ids=[kb.id]) | |||
| rag.delete_chats(ids=[chat.id]) | |||
| def test_list_chats_with_success(get_api_key_fixture): | |||
| API_KEY = get_api_key_fixture | |||
| rag = RAGFlow(API_KEY, HOST_ADDRESS) | |||
| kb = rag.create_dataset(name="test_delete_chat") | |||
| displayed_name = "ragflow.txt" | |||
| with open("./ragflow.txt", "rb") as file: | |||
| blob = file.read() | |||
| document = {"displayed_name": displayed_name, "blob": blob} | |||
| documents = [] | |||
| documents.append(document) | |||
| docs = kb.upload_documents(documents) | |||
| for doc in docs: | |||
| doc.add_chunk("This is a test to add chunk") | |||
| rag.create_chat("test_list_1", dataset_ids=[kb.id]) | |||
| rag.create_chat("test_list_2", dataset_ids=[kb.id]) | |||
| rag.list_chats() | |||
| @@ -10,16 +10,13 @@ def test_create_session_with_success(get_api_key_fixture): | |||
| displayed_name = "ragflow.txt" | |||
| with open("./ragflow.txt", "rb") as file: | |||
| blob = file.read() | |||
| document = {"displayed_name": displayed_name, "blob": blob} | |||
| document = {"displayed_name":displayed_name,"blob":blob} | |||
| documents = [] | |||
| documents.append(document) | |||
| doc_ids = [] | |||
| docs = kb.upload_documents(documents) | |||
| docs= kb.upload_documents(documents) | |||
| for doc in docs: | |||
| doc_ids.append(doc.id) | |||
| kb.async_parse_documents(doc_ids) | |||
| time.sleep(60) | |||
| assistant = rag.create_chat(name="test_create_session", datasets=[kb]) | |||
| doc.add_chunk("This is a test to add chunk") | |||
| assistant=rag.create_chat("test_create", dataset_ids=[kb.id]) | |||
| assistant.create_session() | |||
| @@ -30,16 +27,13 @@ def test_create_conversation_with_success(get_api_key_fixture): | |||
| displayed_name = "ragflow.txt" | |||
| with open("./ragflow.txt","rb") as file: | |||
| blob = file.read() | |||
| document = {"displayed_name":displayed_name,"blob":blob} | |||
| document = {"displayed_name": displayed_name, "blob": blob} | |||
| documents = [] | |||
| documents.append(document) | |||
| doc_ids = [] | |||
| docs= kb.upload_documents(documents) | |||
| docs = kb.upload_documents(documents) | |||
| for doc in docs: | |||
| doc_ids.append(doc.id) | |||
| kb.async_parse_documents(doc_ids) | |||
| time.sleep(60) | |||
| assistant = rag.create_chat(name="test_create_conversation", datasets=[kb]) | |||
| doc.add_chunk("This is a test to add chunk") | |||
| assistant = rag.create_chat("test_create", dataset_ids=[kb.id]) | |||
| session = assistant.create_session() | |||
| question = "What is AI" | |||
| for ans in session.ask(question, stream=True): | |||
| @@ -57,13 +51,10 @@ def test_delete_sessions_with_success(get_api_key_fixture): | |||
| document = {"displayed_name":displayed_name,"blob":blob} | |||
| documents = [] | |||
| documents.append(document) | |||
| doc_ids = [] | |||
| docs= kb.upload_documents(documents) | |||
| for doc in docs: | |||
| doc_ids.append(doc.id) | |||
| kb.async_parse_documents(doc_ids) | |||
| time.sleep(60) | |||
| assistant = rag.create_chat(name="test_delete_session", datasets=[kb]) | |||
| doc.add_chunk("This is a test to add chunk") | |||
| assistant=rag.create_chat("test_create", dataset_ids=[kb.id]) | |||
| session = assistant.create_session() | |||
| assistant.delete_sessions(ids=[session.id]) | |||
| @@ -74,16 +65,13 @@ def test_update_session_with_name(get_api_key_fixture): | |||
| displayed_name = "ragflow.txt" | |||
| with open("./ragflow.txt","rb") as file: | |||
| blob = file.read() | |||
| document = {"displayed_name":displayed_name,"blob":blob} | |||
| document = {"displayed_name": displayed_name, "blob": blob} | |||
| documents = [] | |||
| documents.append(document) | |||
| doc_ids = [] | |||
| docs= kb.upload_documents(documents) | |||
| docs = kb.upload_documents(documents) | |||
| for doc in docs: | |||
| doc_ids.append(doc.id) | |||
| kb.async_parse_documents(doc_ids) | |||
| time.sleep(60) | |||
| assistant = rag.create_chat(name="test_update_session", datasets=[kb]) | |||
| doc.add_chunk("This is a test to add chunk") | |||
| assistant = rag.create_chat("test_create", dataset_ids=[kb.id]) | |||
| session = assistant.create_session(name="old session") | |||
| session.update({"name": "new session"}) | |||
| @@ -98,13 +86,10 @@ def test_list_sessions_with_success(get_api_key_fixture): | |||
| document = {"displayed_name":displayed_name,"blob":blob} | |||
| documents = [] | |||
| documents.append(document) | |||
| doc_ids = [] | |||
| docs= kb.upload_documents(documents) | |||
| for doc in docs: | |||
| doc_ids.append(doc.id) | |||
| kb.async_parse_documents(doc_ids) | |||
| time.sleep(60) | |||
| assistant = rag.create_chat(name="test_list_session", datasets=[kb]) | |||
| doc.add_chunk("This is a test to add chunk") | |||
| assistant=rag.create_chat("test_create", dataset_ids=[kb.id]) | |||
| assistant.create_session("test_1") | |||
| assistant.create_session("test_2") | |||
| assistant.list_sessions() | |||