Quellcode durchsuchen

Feat: add meta data filter. (#9405)

### What problem does this PR solve?

#8531 
#7417 
#6761 
#6573
#6477

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
tags/v0.20.2
Kevin Hu vor 2 Monaten
Ursprung
Commit
153e430b00
Es ist kein Account mit der E-Mail-Adresse des Committers verbunden

+ 2
- 0
api/apps/dialog_app.py Datei anzeigen

@@ -51,6 +51,7 @@ def set_dialog():
similarity_threshold = req.get("similarity_threshold", 0.1)
vector_similarity_weight = req.get("vector_similarity_weight", 0.3)
llm_setting = req.get("llm_setting", {})
meta_data_filter = req.get("meta_data_filter", {})
prompt_config = req["prompt_config"]

if not is_create:
@@ -85,6 +86,7 @@ def set_dialog():
"llm_id": llm_id,
"llm_setting": llm_setting,
"prompt_config": prompt_config,
"meta_data_filter": meta_data_filter,
"top_n": top_n,
"top_k": top_k,
"rerank_id": rerank_id,

+ 5
- 0
api/apps/document_app.py Datei anzeigen

@@ -681,6 +681,11 @@ def set_meta():
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
try:
meta = json.loads(req["meta"])
if not isinstance(meta, dict):
return get_json_result(data=False, message="Only dictionary type supported.", code=settings.RetCode.ARGUMENT_ERROR)
for k,v in meta.items():
if not isinstance(v, str) and not isinstance(v, int) and not isinstance(v, float):
return get_json_result(data=False, message=f"The type is not supported: {v}", code=settings.RetCode.ARGUMENT_ERROR)
except Exception as e:
return get_json_result(data=False, message=f"Json syntax error: {e}", code=settings.RetCode.ARGUMENT_ERROR)
if not isinstance(meta, dict):

+ 15
- 0
api/apps/kb_app.py Datei anzeigen

@@ -351,6 +351,7 @@ def knowledge_graph(kb_id):
obj["graph"]["edges"] = sorted(filtered_edges, key=lambda x: x.get("weight", 0), reverse=True)[:128]
return get_json_result(data=obj)


@manager.route('/<kb_id>/knowledge_graph', methods=['DELETE']) # noqa: F821
@login_required
def delete_knowledge_graph(kb_id):
@@ -364,3 +365,17 @@ def delete_knowledge_graph(kb_id):
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), kb_id)

return get_json_result(data=True)


@manager.route("/get_meta", methods=["GET"]) # noqa: F821
@login_required
def get_meta():
kb_ids = request.args.get("kb_ids", "").split(",")
for kb_id in kb_ids:
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
return get_json_result(data=DocumentService.get_meta_by_kbs(kb_ids))

+ 5
- 0
api/db/db_models.py Datei anzeigen

@@ -744,6 +744,7 @@ class Dialog(DataBaseModel):
null=False,
default={"system": "", "prologue": "Hi! I'm your assistant, what can I do for you?", "parameters": [], "empty_response": "Sorry! No relevant content was found in the knowledge base!"},
)
meta_data_filter = JSONField(null=True, default={})

similarity_threshold = FloatField(default=0.2)
vector_similarity_weight = FloatField(default=0.3)
@@ -1015,4 +1016,8 @@ def migrate_db():
migrate(migrator.add_column("api_4_conversation", "errors", TextField(null=True, help_text="errors")))
except Exception:
pass
try:
migrate(migrator.add_column("dialog", "meta_data_filter", JSONField(null=True, default={})))
except Exception:
pass
logging.disable(logging.NOTSET)

+ 52
- 1
api/db/services/dialog_service.py Datei anzeigen

@@ -30,6 +30,7 @@ from api import settings
from api.db import LLMType, ParserType, StatusEnum
from api.db.db_models import DB, Dialog
from api.db.services.common_service import CommonService
from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.langfuse_service import TenantLangfuseService
from api.db.services.llm_service import LLMBundle, TenantLLMService
@@ -38,6 +39,7 @@ from rag.app.resume import forbidden_select_fields4resume
from rag.app.tag import label_question
from rag.nlp.search import index_name
from rag.prompts import chunks_format, citation_prompt, cross_languages, full_question, kb_prompt, keyword_extraction, message_fit_in
from rag.prompts.prompts import gen_meta_filter
from rag.utils import num_tokens_from_string, rmSpace
from rag.utils.tavily_conn import Tavily

@@ -250,6 +252,46 @@ def repair_bad_citation_formats(answer: str, kbinfos: dict, idx: set):
return answer, idx


def meta_filter(metas: dict, filters: list[dict]):
doc_ids = []
def filter_out(v2docs, operator, value):
nonlocal doc_ids
for input,docids in v2docs.items():
try:
input = float(input)
value = float(value)
except Exception:
input = str(input)
value = str(value)

for conds in [
(operator == "contains", str(value).lower() in str(input).lower()),
(operator == "not contains", str(value).lower() not in str(input).lower()),
(operator == "start with", str(input).lower().startswith(str(value).lower())),
(operator == "end with", str(input).lower().endswith(str(value).lower())),
(operator == "empty", not input),
(operator == "not empty", input),
(operator == "=", input == value),
(operator == "≠", input != value),
(operator == ">", input > value),
(operator == "<", input < value),
(operator == "≥", input >= value),
(operator == "≤", input <= value),
]:
try:
if all(conds):
doc_ids.extend(docids)
except Exception:
pass

for k, v2docs in metas.items():
for f in filters:
if k != f["key"]:
continue
filter_out(v2docs, f["op"], f["value"])
return doc_ids


def chat(dialog, messages, stream=True, **kwargs):
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
if not dialog.kb_ids and not dialog.prompt_config.get("tavily_api_key"):
@@ -287,9 +329,10 @@ def chat(dialog, messages, stream=True, **kwargs):

retriever = settings.retrievaler
questions = [m["content"] for m in messages if m["role"] == "user"][-3:]
attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None
attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else []
if "doc_ids" in messages[-1]:
attachments = messages[-1]["doc_ids"]

prompt_config = dialog.prompt_config
field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
# try to use sql if field mapping is good to go
@@ -316,6 +359,14 @@ def chat(dialog, messages, stream=True, **kwargs):
if prompt_config.get("cross_languages"):
questions = [cross_languages(dialog.tenant_id, dialog.llm_id, questions[0], prompt_config["cross_languages"])]

if dialog.meta_data_filter:
metas = DocumentService.get_meta_by_kbs(dialog.kb_ids)
if dialog.meta_data_filter.get("method") == "auto":
filters = gen_meta_filter(chat_mdl, metas, questions[-1])
attachments.extend(meta_filter(metas, filters))
elif dialog.meta_data_filter.get("method") == "manual":
attachments.extend(meta_filter(metas, dialog.meta_data_filter["manual"]))

if prompt_config.get("keyword", False):
questions[-1] += keyword_extraction(chat_mdl, questions[-1])


+ 19
- 0
api/db/services/document_service.py Datei anzeigen

@@ -574,6 +574,25 @@ class DocumentService(CommonService):
def update_meta_fields(cls, doc_id, meta_fields):
return cls.update_by_id(doc_id, {"meta_fields": meta_fields})

@classmethod
@DB.connection_context()
def get_meta_by_kbs(cls, kb_ids):
fields = [
cls.model.id,
cls.model.meta_fields,
]
meta = {}
for r in cls.model.select(*fields).where(cls.model.kb_id.in_(kb_ids)):
doc_id = r.id
for k,v in r.meta_fields.items():
if k not in meta:
meta[k] = {}
v = str(v)
if v not in meta[k]:
meta[k][v] = []
meta[k][v].append(doc_id)
return meta

@classmethod
@DB.connection_context()
def update_progress(cls):

+ 0
- 2
rag/nlp/search.py Datei anzeigen

@@ -383,8 +383,6 @@ class Dealer:
vector_column = f"q_{dim}_vec"
zero_vector = [0.0] * dim
sim_np = np.array(sim)
if doc_ids:
similarity_threshold = 0
filtered_count = (sim_np >= similarity_threshold).sum()
ranks["total"] = int(filtered_count) # Convert from np.int64 to Python int otherwise JSON serializable error
for i in idx:

+ 53
- 0
rag/prompts/meta_filter.md Datei anzeigen

@@ -0,0 +1,53 @@
You are a metadata filtering condition generator. Analyze the user's question and available document metadata to output a JSON array of filter objects. Follow these rules:

1. **Metadata Structure**:
- Metadata is provided as JSON where keys are attribute names (e.g., "color"), and values are objects mapping attribute values to document IDs.
- Example:
{
"color": {"red": ["doc1"], "blue": ["doc2"]},
"listing_date": {"2025-07-11": ["doc1"], "2025-08-01": ["doc2"]}
}

2. **Output Requirements**:
- Always output a JSON array of filter objects
- Each object must have:
"key": (metadata attribute name),
"value": (string value to compare),
"op": (operator from allowed list)

3. **Operator Guide**:
- Use these operators only: ["contains", "not contains", "start with", "end with", "empty", "not empty", "=", "≠", ">", "<", "≥", "≤"]
- Date ranges: Break into two conditions (≥ start_date AND < next_month_start)
- Negations: Always use "≠" for exclusion terms ("not", "except", "exclude", "≠")
- Implicit logic: Derive unstated filters (e.g., "July" → [≥ YYYY-07-01, < YYYY-08-01])

4. **Processing Steps**:
a) Identify ALL filterable attributes in the query (both explicit and implicit)
b) For dates:
- Infer missing year from current date if needed
- Always format dates as "YYYY-MM-DD"
- Convert ranges: [≥ start, < end]
c) For values: Match EXACTLY to metadata's value keys
d) Skip conditions if:
- Attribute doesn't exist in metadata
- Value has no match in metadata

5. **Example**:
- User query: "上市日期七月份的有哪些商品,不要蓝色的"
- Metadata: { "color": {...}, "listing_date": {...} }
- Output:
[
{"key": "listing_date", "value": "2025-07-01", "op": "≥"},
{"key": "listing_date", "value": "2025-08-01", "op": "<"},
{"key": "color", "value": "blue", "op": "≠"}
]

6. **Final Output**:
- ONLY output valid JSON array
- NO additional text/explanations

**Current Task**:
- Today's date: {{current_date}}
- Available metadata keys: {{metadata_keys}}
- User query: "{{user_question}}"


+ 18
- 0
rag/prompts/prompts.py Datei anzeigen

@@ -149,6 +149,7 @@ NEXT_STEP = load_prompt("next_step")
REFLECT = load_prompt("reflect")
SUMMARY4MEMORY = load_prompt("summary4memory")
RANK_MEMORY = load_prompt("rank_memory")
META_FILTER = load_prompt("meta_filter")

PROMPT_JINJA_ENV = jinja2.Environment(autoescape=False, trim_blocks=True, lstrip_blocks=True)

@@ -413,3 +414,20 @@ def rank_memories(chat_mdl, goal:str, sub_goal:str, tool_call_summaries: list[st
ans = chat_mdl.chat(msg[0]["content"], msg[1:], stop="<|stop|>")
return re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)


def gen_meta_filter(chat_mdl, meta_data:dict, query: str) -> list:
sys_prompt = PROMPT_JINJA_ENV.from_string(META_FILTER).render(
current_date=datetime.datetime.today().strftime('%Y-%m-%d'),
metadata_keys=json.dumps(meta_data),
user_question=query
)
user_prompt = "Generate filters:"
ans = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_prompt}])
ans = re.sub(r"(^.*</think>|```json\n|```\n*$)", "", ans, flags=re.DOTALL)
try:
ans = json_repair.loads(ans)
assert isinstance(ans, list), ans
return ans
except Exception:
logging.exception(f"Loading json failure: {ans}")
return []

+ 1
- 1
rag/svr/task_executor.py Datei anzeigen

@@ -444,7 +444,7 @@ async def embedding(docs, mdl, parser_config=None, callback=None):
tts = np.concatenate([vts for _ in range(len(tts))], axis=0)
tk_count += c

@timeout(5)
@timeout(60)
def batch_encode(txts):
nonlocal mdl
return mdl.encode([truncate(c, mdl.max_length-10) for c in txts])

+ 14
- 0
rag/utils/s3_conn.py Datei anzeigen

@@ -190,3 +190,17 @@ class RAGFlowS3:
self.__open__()
time.sleep(1)
return

@use_prefix_path
@use_default_bucket
def rm_bucket(self, bucket, *args, **kwargs):
for conn in self.conn:
try:
if not conn.bucket_exists(bucket):
continue
for o in conn.list_objects_v2(Bucket=bucket):
conn.delete_object(bucket, o.object_name)
conn.delete_bucket(Bucket=bucket)
return
except Exception as e:
logging.error(f"Fail rm {bucket}: " + str(e))

Laden…
Abbrechen
Speichern