You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1 yıl önce
1 yıl önce
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265
  1. <div align="center">
  2. <a href="https://demo.ragflow.io/">
  3. <img src="web/src/assets/logo-with-text.png" width="520" alt="ragflow logo">
  4. </a>
  5. </div>
  6. <p align="center">
  7. <a href="./README.md">English</a> |
  8. <a href="./README_zh.md">简体中文</a> |
  9. <a href="./README_ja.md">日本語</a>
  10. </p>
  11. <p align="center">
  12. <a href="https://github.com/infiniflow/ragflow/releases/latest">
  13. <img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
  14. </a>
  15. <a href="https://demo.ragflow.io" target="_blank">
  16. <img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99"></a>
  17. <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
  18. <img src="https://img.shields.io/badge/docker_pull-ragflow:v0.5.0-brightgreen"
  19. alt="docker pull infiniflow/ragflow:v0.5.0"></a>
  20. <a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
  21. <img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?style=flat-square&labelColor=d4eaf7&color=1570EF" alt="license">
  22. </a>
  23. </p>
  24. ## 💡 What is RAGFlow?
  25. [RAGFlow](https://demo.ragflow.io) is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data.
  26. ## 🌟 Key Features
  27. ### 🍭 **"Quality in, quality out"**
  28. - [Deep document understanding](./deepdoc/README.md)-based knowledge extraction from unstructured data with complicated formats.
  29. - Finds "needle in a data haystack" of literally unlimited tokens.
  30. ### 🍱 **Template-based chunking**
  31. - Intelligent and explainable.
  32. - Plenty of template options to choose from.
  33. ### 🌱 **Grounded citations with reduced hallucinations**
  34. - Visualization of text chunking to allow human intervention.
  35. - Quick view of the key references and traceable citations to support grounded answers.
  36. ### 🍔 **Compatibility with heterogeneous data sources**
  37. - Supports Word, slides, excel, txt, images, scanned copies, structured data, web pages, and more.
  38. ### 🛀 **Automated and effortless RAG workflow**
  39. - Streamlined RAG orchestration catered to both personal and large businesses.
  40. - Configurable LLMs as well as embedding models.
  41. - Multiple recall paired with fused re-ranking.
  42. - Intuitive APIs for seamless integration with business.
  43. ## 📌 Latest Features
  44. - 2024-05-08 Integrates LLM DeepSeek.
  45. - 2024-04-26 Adds file management.
  46. - 2024-04-19 Supports conversation API ([detail](./docs/conversation_api.md)).
  47. - 2024-04-16 Integrates an embedding model 'bce-embedding-base_v1' from [BCEmbedding](https://github.com/netease-youdao/BCEmbedding), and [FastEmbed](https://github.com/qdrant/fastembed), which is designed specifically for light and speedy embedding.
  48. - 2024-04-11 Supports [Xinference](./docs/xinference.md) for local LLM deployment.
  49. - 2024-04-10 Adds a new layout recognition model for analyzing Laws documentation.
  50. - 2024-04-08 Supports [Ollama](./docs/ollama.md) for local LLM deployment.
  51. - 2024-04-07 Supports Chinese UI.
  52. ## 🔎 System Architecture
  53. <div align="center" style="margin-top:20px;margin-bottom:20px;">
  54. <img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>
  55. </div>
  56. ## 🎬 Get Started
  57. ### 📝 Prerequisites
  58. - CPU >= 4 cores
  59. - RAM >= 16 GB
  60. - Disk >= 50 GB
  61. - Docker >= 24.0.0 & Docker Compose >= v2.26.1
  62. > If you have not installed Docker on your local machine (Windows, Mac, or Linux), see [Install Docker Engine](https://docs.docker.com/engine/install/).
  63. ### 🚀 Start up the server
  64. 1. Ensure `vm.max_map_count` >= 262144 ([more](./docs/max_map_count.md)):
  65. > To check the value of `vm.max_map_count`:
  66. >
  67. > ```bash
  68. > $ sysctl vm.max_map_count
  69. > ```
  70. >
  71. > Reset `vm.max_map_count` to a value at least 262144 if it is not.
  72. >
  73. > ```bash
  74. > # In this case, we set it to 262144:
  75. > $ sudo sysctl -w vm.max_map_count=262144
  76. > ```
  77. >
  78. > This change will be reset after a system reboot. To ensure your change remains permanent, add or update the `vm.max_map_count` value in **/etc/sysctl.conf** accordingly:
  79. >
  80. > ```bash
  81. > vm.max_map_count=262144
  82. > ```
  83. 2. Clone the repo:
  84. ```bash
  85. $ git clone https://github.com/infiniflow/ragflow.git
  86. ```
  87. 3. Build the pre-built Docker images and start up the server:
  88. ```bash
  89. $ cd ragflow/docker
  90. $ chmod +x ./entrypoint.sh
  91. $ docker compose up -d
  92. ```
  93. > Please note that running the above commands will automatically download the development version docker image of RAGFlow. If you want to download and run a specific version of docker image, please find the RAGFLOW_VERSION variable in the docker/.env file, change it to the corresponding version, for example, RAGFLOW_VERSION=v0.5.0, and run the above commands.
  94. > The core image is about 9 GB in size and may take a while to load.
  95. 4. Check the server status after having the server up and running:
  96. ```bash
  97. $ docker logs -f ragflow-server
  98. ```
  99. _The following output confirms a successful launch of the system:_
  100. ```bash
  101. ____ ______ __
  102. / __ \ ____ _ ____ _ / ____// /____ _ __
  103. / /_/ // __ `// __ `// /_ / // __ \| | /| / /
  104. / _, _// /_/ // /_/ // __/ / // /_/ /| |/ |/ /
  105. /_/ |_| \__,_/ \__, //_/ /_/ \____/ |__/|__/
  106. /____/
  107. * Running on all addresses (0.0.0.0)
  108. * Running on http://127.0.0.1:9380
  109. * Running on http://x.x.x.x:9380
  110. INFO:werkzeug:Press CTRL+C to quit
  111. ```
  112. > If you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a `network anomaly` error because, at that moment, your RAGFlow may not be fully initialized.
  113. 5. In your web browser, enter the IP address of your server and log in to RAGFlow.
  114. > With default settings, you only need to enter `http://IP_OF_YOUR_MACHINE` (**sans** port number) as the default HTTP serving port `80` can be omitted when using the default configurations.
  115. 6. In [service_conf.yaml](./docker/service_conf.yaml), select the desired LLM factory in `user_default_llm` and update the `API_KEY` field with the corresponding API key.
  116. > See [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md) for more information.
  117. _The show is now on!_
  118. ## 🔧 Configurations
  119. When it comes to system configurations, you will need to manage the following files:
  120. - [.env](./docker/.env): Keeps the fundamental setups for the system, such as `SVR_HTTP_PORT`, `MYSQL_PASSWORD`, and `MINIO_PASSWORD`.
  121. - [service_conf.yaml](./docker/service_conf.yaml): Configures the back-end services.
  122. - [docker-compose.yml](./docker/docker-compose.yml): The system relies on [docker-compose.yml](./docker/docker-compose.yml) to start up.
  123. You must ensure that changes to the [.env](./docker/.env) file are in line with what are in the [service_conf.yaml](./docker/service_conf.yaml) file.
  124. > The [./docker/README](./docker/README.md) file provides a detailed description of the environment settings and service configurations, and you are REQUIRED to ensure that all environment settings listed in the [./docker/README](./docker/README.md) file are aligned with the corresponding configurations in the [service_conf.yaml](./docker/service_conf.yaml) file.
  125. To update the default HTTP serving port (80), go to [docker-compose.yml](./docker/docker-compose.yml) and change `80:80` to `<YOUR_SERVING_PORT>:80`.
  126. > Updates to all system configurations require a system reboot to take effect:
  127. >
  128. > ```bash
  129. > $ docker-compose up -d
  130. > ```
  131. ## 🛠️ Build from source
  132. To build the Docker images from source:
  133. ```bash
  134. $ git clone https://github.com/infiniflow/ragflow.git
  135. $ cd ragflow/
  136. $ docker build -t infiniflow/ragflow:dev .
  137. $ cd ragflow/docker
  138. $ chmod +x ./entrypoint.sh
  139. $ docker compose up -d
  140. ```
  141. ## 🛠️ Launch Service from Source
  142. To launch the service from source, please follow these steps:
  143. 1. Clone the repository
  144. ```bash
  145. $ git clone https://github.com/infiniflow/ragflow.git
  146. $ cd ragflow/
  147. ```
  148. 2. Create a virtual environment (ensure Anaconda or Miniconda is installed)
  149. ```bash
  150. $ conda create -n ragflow python=3.11.0
  151. $ conda activate ragflow
  152. $ pip install -r requirements.txt
  153. ```
  154. If CUDA version is greater than 12.0, execute the following additional commands:
  155. ```bash
  156. $ pip uninstall -y onnxruntime-gpu
  157. $ pip install onnxruntime-gpu --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/
  158. ```
  159. 3. Copy the entry script and configure environment variables
  160. ```bash
  161. $ cp docker/entrypoint.sh .
  162. $ vi entrypoint.sh
  163. ```
  164. Use the following commands to obtain the Python path and the ragflow project path:
  165. ```bash
  166. $ which python
  167. $ pwd
  168. ```
  169. Set the output of `which python` as the value for `PY` and the output of `pwd` as the value for `PYTHONPATH`.
  170. If `LD_LIBRARY_PATH` is already configured, it can be commented out.
  171. ```bash
  172. # Adjust configurations according to your actual situation; the two export commands are newly added.
  173. PY=${PY}
  174. export PYTHONPATH=${PYTHONPATH}
  175. # Optional: Add Hugging Face mirror
  176. export HF_ENDPOINT=https://hf-mirror.com
  177. ```
  178. 4. Start the base services
  179. ```bash
  180. $ cd docker
  181. $ docker compose -f docker-compose-base.yml up -d
  182. ```
  183. 5. Check the configuration files
  184. Ensure that the settings in **docker/.env** match those in **conf/service_conf.yaml**. The IP addresses and ports for related services in **service_conf.yaml** should be changed to the local machine IP and ports exposed by the container.
  185. 6. Launch the service
  186. ```bash
  187. $ chmod +x ./entrypoint.sh
  188. $ bash ./entrypoint.sh
  189. ```
  190. ## 📚 Documentation
  191. - [FAQ](./docs/faq.md)
  192. ## 📜 Roadmap
  193. See the [RAGFlow Roadmap 2024](https://github.com/infiniflow/ragflow/issues/162)
  194. ## 🏄 Community
  195. - [Discord](https://discord.gg/4XxujFgUN7)
  196. - [Twitter](https://twitter.com/infiniflowai)
  197. ## 🙌 Contributing
  198. RAGFlow flourishes via open-source collaboration. In this spirit, we embrace diverse contributions from the community. If you would like to be a part, review our [Contribution Guidelines](https://github.com/infiniflow/ragflow/blob/main/docs/CONTRIBUTING.md) first.