|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- # Plugins
-
- This directory contains the plugin mechanism for RAGFlow.
-
- RAGFlow will load plugins from `embedded_plugins` subdirectory recursively.
-
- ## Supported plugin types
-
- Currently, the only supported plugin type is `llm_tools`.
-
- - `llm_tools`: A tool for LLM to call.
-
- ## How to add a plugin
-
- Add a LLM tool plugin is simple: create a plugin file, put a class inherits the `LLMToolPlugin` class in it, then implement the `get_metadata` and the `invoke` methods.
-
- - `get_metadata` method: This method returns a `LLMToolMetadata` object, which contains the description of this tool.
- The description will be provided to LLM, and the RAGFlow web frontend for displaying.
-
- - `invoke` method: This method accepts parameters generated by LLM, and return a `str` containing the tool execution result.
- All the execution logic of this tool should go into this method.
-
- When you start RAGFlow, you can see your plugin was loaded in the log:
-
- ```
- 2025-05-15 19:29:08,959 INFO 34670 Recursively importing plugins from path `/some-path/ragflow/plugin/embedded_plugins`
- 2025-05-15 19:29:08,960 INFO 34670 Loaded llm_tools plugin BadCalculatorPlugin version 1.0.0
- ```
-
- Or it may contain some errors for you to fix your plugin.
-
- ### Demo
-
- We will demonstrate how to add a plugin with a calculator tool which will give wrong answers.
-
- First, create a plugin file `bad_calculator.py` under the `embedded_plugins/llm_tools` directory.
-
- Then, we create a `BadCalculatorPlugin` class, extending the `LLMToolPlugin` base class:
-
- ```python
- class BadCalculatorPlugin(LLMToolPlugin):
- _version_ = "1.0.0"
- ```
-
- The `_version_` field is required, which specifies the version of the plugin.
-
- Our calculator has two numbers `a` and `b` as inputs, so we add a `invoke` method to our `BadCalculatorPlugin` class:
-
- ```python
- def invoke(self, a: int, b: int) -> str:
- return str(a + b + 100)
- ```
-
- The `invoke` method will be called by LLM. It can have many parameters, but the return type must be a `str`.
-
- Finally, we have to add a `get_metadata` method, to tell LLM how to use our `bad_calculator`:
-
- ```python
- @classmethod
- def get_metadata(cls) -> LLMToolMetadata:
- return {
- # Name of this tool, providing to LLM
- "name": "bad_calculator",
- # Display name of this tool, providing to RAGFlow frontend
- "displayName": "$t:bad_calculator.name",
- # Description of the usage of this tool, providing to LLM
- "description": "A tool to calculate the sum of two numbers (will give wrong answer)",
- # Description of this tool, providing to RAGFlow frontend
- "displayDescription": "$t:bad_calculator.description",
- # Parameters of this tool
- "parameters": {
- # The first parameter - a
- "a": {
- # Parameter type, options are: number, string, or whatever the LLM can recognise
- "type": "number",
- # Description of this parameter, providing to LLM
- "description": "The first number",
- # Description of this parameter, provding to RAGFlow frontend
- "displayDescription": "$t:bad_calculator.params.a",
- # Whether this parameter is required
- "required": True
- },
- # The second parameter - b
- "b": {
- "type": "number",
- "description": "The second number",
- "displayDescription": "$t:bad_calculator.params.b",
- "required": True
- }
- }
- ```
-
- The `get_metadata` method is a `classmethod`. It will provide the description of this tool to LLM.
-
- The fields starts with `display` can use a special notation: `$t:xxx`, which will use the i18n mechanism in the RAGFlow frontend, getting text from the `llmTools` category. The frontend will display what you put here if you don't use this notation.
-
- Now our tool is ready. You can select it in the `Generate` component and try it out.
|