Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

python_api_reference.md 47KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734
  1. ---
  2. sidebar_position: 2
  3. slug: /python_api_reference
  4. ---
  5. # Python API
  6. A complete reference for RAGFlow's Python APIs. Before proceeding, please ensure you [have your RAGFlow API key ready for authentication](../guides/models/llm_api_key_setup.md).
  7. :::tip NOTE
  8. Run the following command to download the Python SDK:
  9. ```bash
  10. pip install ragflow-sdk
  11. ```
  12. :::
  13. ---
  14. ## OpenAI-Compatible API
  15. ---
  16. ### Create chat completion
  17. Creates a model response for the given historical chat conversation via OpenAI's API.
  18. #### Parameters
  19. ##### model: `str`, *Required*
  20. The model used to generate the response. The server will parse this automatically, so you can set it to any value for now.
  21. ##### messages: `list[object]`, *Required*
  22. A list of historical chat messages used to generate the response. This must contain at least one message with the `user` role.
  23. ##### stream: `boolean`
  24. Whether to receive the response as a stream. Set this to `false` explicitly if you prefer to receive the entire response in one go instead of as a stream.
  25. #### Returns
  26. - Success: Response [message](https://platform.openai.com/docs/api-reference/chat/create) like OpenAI
  27. - Failure: `Exception`
  28. #### Examples
  29. ```python
  30. from openai import OpenAI
  31. model = "model"
  32. client = OpenAI(api_key="ragflow-api-key", base_url=f"http://ragflow_address/api/v1/chats_openai/<chat_id>")
  33. completion = client.chat.completions.create(
  34. model=model,
  35. messages=[
  36. {"role": "system", "content": "You are a helpful assistant."},
  37. {"role": "user", "content": "Who are you?"},
  38. ],
  39. stream=True
  40. )
  41. stream = True
  42. if stream:
  43. for chunk in completion:
  44. print(chunk)
  45. else:
  46. print(completion.choices[0].message.content)
  47. ```
  48. ## DATASET MANAGEMENT
  49. ---
  50. ### Create dataset
  51. ```python
  52. RAGFlow.create_dataset(
  53. name: str,
  54. avatar: str = "",
  55. description: str = "",
  56. embedding_model: str = "BAAI/bge-large-zh-v1.5",
  57. language: str = "English",
  58. permission: str = "me",
  59. chunk_method: str = "naive",
  60. parser_config: DataSet.ParserConfig = None
  61. ) -> DataSet
  62. ```
  63. Creates a dataset.
  64. #### Parameters
  65. ##### name: `str`, *Required*
  66. The unique name of the dataset to create. It must adhere to the following requirements:
  67. - Permitted characters include:
  68. - English letters (a-z, A-Z)
  69. - Digits (0-9)
  70. - "_" (underscore)
  71. - Must begin with an English letter or underscore.
  72. - Maximum 65,535 characters.
  73. - Case-insensitive.
  74. ##### avatar: `str`
  75. Base64 encoding of the avatar. Defaults to `""`
  76. ##### description: `str`
  77. A brief description of the dataset to create. Defaults to `""`.
  78. ##### language: `str`
  79. The language setting of the dataset to create. Available options:
  80. - `"English"` (default)
  81. - `"Chinese"`
  82. ##### permission
  83. Specifies who can access the dataset to create. Available options:
  84. - `"me"`: (Default) Only you can manage the dataset.
  85. - `"team"`: All team members can manage the dataset.
  86. ##### chunk_method, `str`
  87. The chunking method of the dataset to create. Available options:
  88. - `"naive"`: General (default)
  89. - `"manual`: Manual
  90. - `"qa"`: Q&A
  91. - `"table"`: Table
  92. - `"paper"`: Paper
  93. - `"book"`: Book
  94. - `"laws"`: Laws
  95. - `"presentation"`: Presentation
  96. - `"picture"`: Picture
  97. - `"one"`: One
  98. - `"knowledge_graph"`: Knowledge Graph
  99. Ensure your LLM is properly configured on the **Settings** page before selecting this. Please also note that Knowledge Graph consumes a large number of Tokens!
  100. - `"email"`: Email
  101. ##### parser_config
  102. The parser configuration of the dataset. A `ParserConfig` object's attributes vary based on the selected `chunk_method`:
  103. - `chunk_method`=`"naive"`:
  104. `{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","html4excel":False,"layout_recognize":True,"raptor":{"user_raptor":False}}`.
  105. - `chunk_method`=`"qa"`:
  106. `{"raptor": {"user_raptor": False}}`
  107. - `chunk_method`=`"manuel"`:
  108. `{"raptor": {"user_raptor": False}}`
  109. - `chunk_method`=`"table"`:
  110. `None`
  111. - `chunk_method`=`"paper"`:
  112. `{"raptor": {"user_raptor": False}}`
  113. - `chunk_method`=`"book"`:
  114. `{"raptor": {"user_raptor": False}}`
  115. - `chunk_method`=`"laws"`:
  116. `{"raptor": {"user_raptor": False}}`
  117. - `chunk_method`=`"picture"`:
  118. `None`
  119. - `chunk_method`=`"presentation"`:
  120. `{"raptor": {"user_raptor": False}}`
  121. - `chunk_method`=`"one"`:
  122. `None`
  123. - `chunk_method`=`"knowledge-graph"`:
  124. `{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","entity_types":["organization","person","location","event","time"]}`
  125. - `chunk_method`=`"email"`:
  126. `None`
  127. #### Returns
  128. - Success: A `dataset` object.
  129. - Failure: `Exception`
  130. #### Examples
  131. ```python
  132. from ragflow_sdk import RAGFlow
  133. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  134. dataset = rag_object.create_dataset(name="kb_1")
  135. ```
  136. ---
  137. ### Delete datasets
  138. ```python
  139. RAGFlow.delete_datasets(ids: list[str] = None)
  140. ```
  141. Deletes datasets by ID.
  142. #### Parameters
  143. ##### ids: `list[str]`, *Required*
  144. The IDs of the datasets to delete. Defaults to `None`. If it is not specified, all datasets will be deleted.
  145. #### Returns
  146. - Success: No value is returned.
  147. - Failure: `Exception`
  148. #### Examples
  149. ```python
  150. rag_object.delete_datasets(ids=["id_1","id_2"])
  151. ```
  152. ---
  153. ### List datasets
  154. ```python
  155. RAGFlow.list_datasets(
  156. page: int = 1,
  157. page_size: int = 30,
  158. orderby: str = "create_time",
  159. desc: bool = True,
  160. id: str = None,
  161. name: str = None
  162. ) -> list[DataSet]
  163. ```
  164. Lists datasets.
  165. #### Parameters
  166. ##### page: `int`
  167. Specifies the page on which the datasets will be displayed. Defaults to `1`.
  168. ##### page_size: `int`
  169. The number of datasets on each page. Defaults to `30`.
  170. ##### orderby: `str`
  171. The field by which datasets should be sorted. Available options:
  172. - `"create_time"` (default)
  173. - `"update_time"`
  174. ##### desc: `bool`
  175. Indicates whether the retrieved datasets should be sorted in descending order. Defaults to `True`.
  176. ##### id: `str`
  177. The ID of the dataset to retrieve. Defaults to `None`.
  178. ##### name: `str`
  179. The name of the dataset to retrieve. Defaults to `None`.
  180. #### Returns
  181. - Success: A list of `DataSet` objects.
  182. - Failure: `Exception`.
  183. #### Examples
  184. ##### List all datasets
  185. ```python
  186. for dataset in rag_object.list_datasets():
  187. print(dataset)
  188. ```
  189. ##### Retrieve a dataset by ID
  190. ```python
  191. dataset = rag_object.list_datasets(id = "id_1")
  192. print(dataset[0])
  193. ```
  194. ---
  195. ### Update dataset
  196. ```python
  197. DataSet.update(update_message: dict)
  198. ```
  199. Updates configurations for the current dataset.
  200. #### Parameters
  201. ##### update_message: `dict[str, str|int]`, *Required*
  202. A dictionary representing the attributes to update, with the following keys:
  203. - `"name"`: `str` The revised name of the dataset.
  204. - `"embedding_model"`: `str` The updated embedding model name.
  205. - Ensure that `"chunk_count"` is `0` before updating `"embedding_model"`.
  206. - `"chunk_method"`: `str` The chunking method for the dataset. Available options:
  207. - `"naive"`: General
  208. - `"manual`: Manual
  209. - `"qa"`: Q&A
  210. - `"table"`: Table
  211. - `"paper"`: Paper
  212. - `"book"`: Book
  213. - `"laws"`: Laws
  214. - `"presentation"`: Presentation
  215. - `"picture"`: Picture
  216. - `"one"`: One
  217. - `"email"`: Email
  218. #### Returns
  219. - Success: No value is returned.
  220. - Failure: `Exception`
  221. #### Examples
  222. ```python
  223. from ragflow_sdk import RAGFlow
  224. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  225. dataset = rag_object.list_datasets(name="kb_name")
  226. dataset.update({"embedding_model":"BAAI/bge-zh-v1.5", "chunk_method":"manual"})
  227. ```
  228. ---
  229. ## FILE MANAGEMENT WITHIN DATASET
  230. ---
  231. ### Upload documents
  232. ```python
  233. DataSet.upload_documents(document_list: list[dict])
  234. ```
  235. Uploads documents to the current dataset.
  236. #### Parameters
  237. ##### document_list: `list[dict]`, *Required*
  238. A list of dictionaries representing the documents to upload, each containing the following keys:
  239. - `"display_name"`: (Optional) The file name to display in the dataset.
  240. - `"blob"`: (Optional) The binary content of the file to upload.
  241. #### Returns
  242. - Success: No value is returned.
  243. - Failure: `Exception`
  244. #### Examples
  245. ```python
  246. dataset = rag_object.create_dataset(name="kb_name")
  247. dataset.upload_documents([{"display_name": "1.txt", "blob": "<BINARY_CONTENT_OF_THE_DOC>"}, {"display_name": "2.pdf", "blob": "<BINARY_CONTENT_OF_THE_DOC>"}])
  248. ```
  249. ---
  250. ### Update document
  251. ```python
  252. Document.update(update_message:dict)
  253. ```
  254. Updates configurations for the current document.
  255. #### Parameters
  256. ##### update_message: `dict[str, str|dict[]]`, *Required*
  257. A dictionary representing the attributes to update, with the following keys:
  258. - `"display_name"`: `str` The name of the document to update.
  259. - `"meta_fields"`: `dict[str, Any]` The meta fields of the document.
  260. - `"chunk_method"`: `str` The parsing method to apply to the document.
  261. - `"naive"`: General
  262. - `"manual`: Manual
  263. - `"qa"`: Q&A
  264. - `"table"`: Table
  265. - `"paper"`: Paper
  266. - `"book"`: Book
  267. - `"laws"`: Laws
  268. - `"presentation"`: Presentation
  269. - `"picture"`: Picture
  270. - `"one"`: One
  271. - `"knowledge_graph"`: Knowledge Graph
  272. Ensure your LLM is properly configured on the **Settings** page before selecting this. Please also note that Knowledge Graph consumes a large number of Tokens!
  273. - `"email"`: Email
  274. - `"parser_config"`: `dict[str, Any]` The parsing configuration for the document. Its attributes vary based on the selected `"chunk_method"`:
  275. - `"chunk_method"`=`"naive"`:
  276. `{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","html4excel":False,"layout_recognize":True,"raptor":{"user_raptor":False}}`.
  277. - `chunk_method`=`"qa"`:
  278. `{"raptor": {"user_raptor": False}}`
  279. - `chunk_method`=`"manuel"`:
  280. `{"raptor": {"user_raptor": False}}`
  281. - `chunk_method`=`"table"`:
  282. `None`
  283. - `chunk_method`=`"paper"`:
  284. `{"raptor": {"user_raptor": False}}`
  285. - `chunk_method`=`"book"`:
  286. `{"raptor": {"user_raptor": False}}`
  287. - `chunk_method`=`"laws"`:
  288. `{"raptor": {"user_raptor": False}}`
  289. - `chunk_method`=`"presentation"`:
  290. `{"raptor": {"user_raptor": False}}`
  291. - `chunk_method`=`"picture"`:
  292. `None`
  293. - `chunk_method`=`"one"`:
  294. `None`
  295. - `chunk_method`=`"knowledge-graph"`:
  296. `{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","entity_types":["organization","person","location","event","time"]}`
  297. - `chunk_method`=`"email"`:
  298. `None`
  299. #### Returns
  300. - Success: No value is returned.
  301. - Failure: `Exception`
  302. #### Examples
  303. ```python
  304. from ragflow_sdk import RAGFlow
  305. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  306. dataset = rag_object.list_datasets(id='id')
  307. dataset = dataset[0]
  308. doc = dataset.list_documents(id="wdfxb5t547d")
  309. doc = doc[0]
  310. doc.update([{"parser_config": {"chunk_token_count": 256}}, {"chunk_method": "manual"}])
  311. ```
  312. ---
  313. ### Download document
  314. ```python
  315. Document.download() -> bytes
  316. ```
  317. Downloads the current document.
  318. #### Returns
  319. The downloaded document in bytes.
  320. #### Examples
  321. ```python
  322. from ragflow_sdk import RAGFlow
  323. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  324. dataset = rag_object.list_datasets(id="id")
  325. dataset = dataset[0]
  326. doc = dataset.list_documents(id="wdfxb5t547d")
  327. doc = doc[0]
  328. open("~/ragflow.txt", "wb+").write(doc.download())
  329. print(doc)
  330. ```
  331. ---
  332. ### List documents
  333. ```python
  334. Dataset.list_documents(id:str =None, keywords: str=None, page: int=1, page_size:int = 30, order_by:str = "create_time", desc: bool = True) -> list[Document]
  335. ```
  336. Lists documents in the current dataset.
  337. #### Parameters
  338. ##### id: `str`
  339. The ID of the document to retrieve. Defaults to `None`.
  340. ##### keywords: `str`
  341. The keywords used to match document titles. Defaults to `None`.
  342. ##### page: `int`
  343. Specifies the page on which the documents will be displayed. Defaults to `1`.
  344. ##### page_size: `int`
  345. The maximum number of documents on each page. Defaults to `30`.
  346. ##### orderby: `str`
  347. The field by which documents should be sorted. Available options:
  348. - `"create_time"` (default)
  349. - `"update_time"`
  350. ##### desc: `bool`
  351. Indicates whether the retrieved documents should be sorted in descending order. Defaults to `True`.
  352. #### Returns
  353. - Success: A list of `Document` objects.
  354. - Failure: `Exception`.
  355. A `Document` object contains the following attributes:
  356. - `id`: The document ID. Defaults to `""`.
  357. - `name`: The document name. Defaults to `""`.
  358. - `thumbnail`: The thumbnail image of the document. Defaults to `None`.
  359. - `dataset_id`: The dataset ID associated with the document. Defaults to `None`.
  360. - `chunk_method` The chunk method name. Defaults to `"naive"`.
  361. - `source_type`: The source type of the document. Defaults to `"local"`.
  362. - `type`: Type or category of the document. Defaults to `""`. Reserved for future use.
  363. - `created_by`: `str` The creator of the document. Defaults to `""`.
  364. - `size`: `int` The document size in bytes. Defaults to `0`.
  365. - `token_count`: `int` The number of tokens in the document. Defaults to `0`.
  366. - `chunk_count`: `int` The number of chunks in the document. Defaults to `0`.
  367. - `progress`: `float` The current processing progress as a percentage. Defaults to `0.0`.
  368. - `progress_msg`: `str` A message indicating the current progress status. Defaults to `""`.
  369. - `process_begin_at`: `datetime` The start time of document processing. Defaults to `None`.
  370. - `process_duation`: `float` Duration of the processing in seconds. Defaults to `0.0`.
  371. - `run`: `str` The document's processing status:
  372. - `"UNSTART"` (default)
  373. - `"RUNNING"`
  374. - `"CANCEL"`
  375. - `"DONE"`
  376. - `"FAIL"`
  377. - `status`: `str` Reserved for future use.
  378. - `parser_config`: `ParserConfig` Configuration object for the parser. Its attributes vary based on the selected `chunk_method`:
  379. - `chunk_method`=`"naive"`:
  380. `{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","html4excel":False,"layout_recognize":True,"raptor":{"user_raptor":False}}`.
  381. - `chunk_method`=`"qa"`:
  382. `{"raptor": {"user_raptor": False}}`
  383. - `chunk_method`=`"manuel"`:
  384. `{"raptor": {"user_raptor": False}}`
  385. - `chunk_method`=`"table"`:
  386. `None`
  387. - `chunk_method`=`"paper"`:
  388. `{"raptor": {"user_raptor": False}}`
  389. - `chunk_method`=`"book"`:
  390. `{"raptor": {"user_raptor": False}}`
  391. - `chunk_method`=`"laws"`:
  392. `{"raptor": {"user_raptor": False}}`
  393. - `chunk_method`=`"presentation"`:
  394. `{"raptor": {"user_raptor": False}}`
  395. - `chunk_method`=`"picure"`:
  396. `None`
  397. - `chunk_method`=`"one"`:
  398. `None`
  399. - `chunk_method`=`"knowledge-graph"`:
  400. `{"chunk_token_num":128,"delimiter": "\\n!?;。;!?","entity_types":["organization","person","location","event","time"]}`
  401. - `chunk_method`=`"email"`:
  402. `None`
  403. #### Examples
  404. ```python
  405. from ragflow_sdk import RAGFlow
  406. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  407. dataset = rag_object.create_dataset(name="kb_1")
  408. filename1 = "~/ragflow.txt"
  409. blob = open(filename1 , "rb").read()
  410. dataset.upload_documents([{"name":filename1,"blob":blob}])
  411. for doc in dataset.list_documents(keywords="rag", page=0, page_size=12):
  412. print(doc)
  413. ```
  414. ---
  415. ### Delete documents
  416. ```python
  417. DataSet.delete_documents(ids: list[str] = None)
  418. ```
  419. Deletes documents by ID.
  420. #### Parameters
  421. ##### ids: `list[list]`
  422. The IDs of the documents to delete. Defaults to `None`. If it is not specified, all documents in the dataset will be deleted.
  423. #### Returns
  424. - Success: No value is returned.
  425. - Failure: `Exception`
  426. #### Examples
  427. ```python
  428. from ragflow_sdk import RAGFlow
  429. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  430. dataset = rag_object.list_datasets(name="kb_1")
  431. dataset = dataset[0]
  432. dataset.delete_documents(ids=["id_1","id_2"])
  433. ```
  434. ---
  435. ### Parse documents
  436. ```python
  437. DataSet.async_parse_documents(document_ids:list[str]) -> None
  438. ```
  439. Parses documents in the current dataset.
  440. #### Parameters
  441. ##### document_ids: `list[str]`, *Required*
  442. The IDs of the documents to parse.
  443. #### Returns
  444. - Success: No value is returned.
  445. - Failure: `Exception`
  446. #### Examples
  447. ```python
  448. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  449. dataset = rag_object.create_dataset(name="dataset_name")
  450. documents = [
  451. {'display_name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
  452. {'display_name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
  453. {'display_name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
  454. ]
  455. dataset.upload_documents(documents)
  456. documents = dataset.list_documents(keywords="test")
  457. ids = []
  458. for document in documents:
  459. ids.append(document.id)
  460. dataset.async_parse_documents(ids)
  461. print("Async bulk parsing initiated.")
  462. ```
  463. ---
  464. ### Stop parsing documents
  465. ```python
  466. DataSet.async_cancel_parse_documents(document_ids:list[str])-> None
  467. ```
  468. Stops parsing specified documents.
  469. #### Parameters
  470. ##### document_ids: `list[str]`, *Required*
  471. The IDs of the documents for which parsing should be stopped.
  472. #### Returns
  473. - Success: No value is returned.
  474. - Failure: `Exception`
  475. #### Examples
  476. ```python
  477. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  478. dataset = rag_object.create_dataset(name="dataset_name")
  479. documents = [
  480. {'display_name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
  481. {'display_name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
  482. {'display_name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
  483. ]
  484. dataset.upload_documents(documents)
  485. documents = dataset.list_documents(keywords="test")
  486. ids = []
  487. for document in documents:
  488. ids.append(document.id)
  489. dataset.async_parse_documents(ids)
  490. print("Async bulk parsing initiated.")
  491. dataset.async_cancel_parse_documents(ids)
  492. print("Async bulk parsing cancelled.")
  493. ```
  494. ---
  495. ## CHUNK MANAGEMENT WITHIN DATASET
  496. ---
  497. ### Add chunk
  498. ```python
  499. Document.add_chunk(content:str, important_keywords:list[str] = []) -> Chunk
  500. ```
  501. Adds a chunk to the current document.
  502. #### Parameters
  503. ##### content: `str`, *Required*
  504. The text content of the chunk.
  505. ##### important_keywords: `list[str]`
  506. The key terms or phrases to tag with the chunk.
  507. #### Returns
  508. - Success: A `Chunk` object.
  509. - Failure: `Exception`.
  510. A `Chunk` object contains the following attributes:
  511. - `id`: `str`: The chunk ID.
  512. - `content`: `str` The text content of the chunk.
  513. - `important_keywords`: `list[str]` A list of key terms or phrases tagged with the chunk.
  514. - `create_time`: `str` The time when the chunk was created (added to the document).
  515. - `create_timestamp`: `float` The timestamp representing the creation time of the chunk, expressed in seconds since January 1, 1970.
  516. - `dataset_id`: `str` The ID of the associated dataset.
  517. - `document_name`: `str` The name of the associated document.
  518. - `document_id`: `str` The ID of the associated document.
  519. - `available`: `bool` The chunk's availability status in the dataset. Value options:
  520. - `False`: Unavailable
  521. - `True`: Available (default)
  522. #### Examples
  523. ```python
  524. from ragflow_sdk import RAGFlow
  525. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  526. datasets = rag_object.list_datasets(id="123")
  527. dataset = datasets[0]
  528. doc = dataset.list_documents(id="wdfxb5t547d")
  529. doc = doc[0]
  530. chunk = doc.add_chunk(content="xxxxxxx")
  531. ```
  532. ---
  533. ### List chunks
  534. ```python
  535. Document.list_chunks(keywords: str = None, page: int = 1, page_size: int = 30, id : str = None) -> list[Chunk]
  536. ```
  537. Lists chunks in the current document.
  538. #### Parameters
  539. ##### keywords: `str`
  540. The keywords used to match chunk content. Defaults to `None`
  541. ##### page: `int`
  542. Specifies the page on which the chunks will be displayed. Defaults to `1`.
  543. ##### page_size: `int`
  544. The maximum number of chunks on each page. Defaults to `30`.
  545. ##### id: `str`
  546. The ID of the chunk to retrieve. Default: `None`
  547. #### Returns
  548. - Success: A list of `Chunk` objects.
  549. - Failure: `Exception`.
  550. #### Examples
  551. ```python
  552. from ragflow_sdk import RAGFlow
  553. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  554. dataset = rag_object.list_datasets("123")
  555. dataset = dataset[0]
  556. docs = dataset.list_documents(keywords="test", page=1, page_size=12)
  557. for chunk in docs[0].list_chunks(keywords="rag", page=0, page_size=12):
  558. print(chunk)
  559. ```
  560. ---
  561. ### Delete chunks
  562. ```python
  563. Document.delete_chunks(chunk_ids: list[str])
  564. ```
  565. Deletes chunks by ID.
  566. #### Parameters
  567. ##### chunk_ids: `list[str]`
  568. The IDs of the chunks to delete. Defaults to `None`. If it is not specified, all chunks of the current document will be deleted.
  569. #### Returns
  570. - Success: No value is returned.
  571. - Failure: `Exception`
  572. #### Examples
  573. ```python
  574. from ragflow_sdk import RAGFlow
  575. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  576. dataset = rag_object.list_datasets(id="123")
  577. dataset = dataset[0]
  578. doc = dataset.list_documents(id="wdfxb5t547d")
  579. doc = doc[0]
  580. chunk = doc.add_chunk(content="xxxxxxx")
  581. doc.delete_chunks(["id_1","id_2"])
  582. ```
  583. ---
  584. ### Update chunk
  585. ```python
  586. Chunk.update(update_message: dict)
  587. ```
  588. Updates content or configurations for the current chunk.
  589. #### Parameters
  590. ##### update_message: `dict[str, str|list[str]|int]` *Required*
  591. A dictionary representing the attributes to update, with the following keys:
  592. - `"content"`: `str` The text content of the chunk.
  593. - `"important_keywords"`: `list[str]` A list of key terms or phrases to tag with the chunk.
  594. - `"available"`: `bool` The chunk's availability status in the dataset. Value options:
  595. - `False`: Unavailable
  596. - `True`: Available (default)
  597. #### Returns
  598. - Success: No value is returned.
  599. - Failure: `Exception`
  600. #### Examples
  601. ```python
  602. from ragflow_sdk import RAGFlow
  603. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  604. dataset = rag_object.list_datasets(id="123")
  605. dataset = dataset[0]
  606. doc = dataset.list_documents(id="wdfxb5t547d")
  607. doc = doc[0]
  608. chunk = doc.add_chunk(content="xxxxxxx")
  609. chunk.update({"content":"sdfx..."})
  610. ```
  611. ---
  612. ### Retrieve chunks
  613. ```python
  614. RAGFlow.retrieve(question:str="", dataset_ids:list[str]=None, document_ids=list[str]=None, page:int=1, page_size:int=30, similarity_threshold:float=0.2, vector_similarity_weight:float=0.3, top_k:int=1024,rerank_id:str=None,keyword:bool=False,higlight:bool=False) -> list[Chunk]
  615. ```
  616. Retrieves chunks from specified datasets.
  617. #### Parameters
  618. ##### question: `str`, *Required*
  619. The user query or query keywords. Defaults to `""`.
  620. ##### dataset_ids: `list[str]`, *Required*
  621. The IDs of the datasets to search. Defaults to `None`. If you do not set this argument, ensure that you set `document_ids`.
  622. ##### document_ids: `list[str]`
  623. The IDs of the documents to search. Defaults to `None`. You must ensure all selected documents use the same embedding model. Otherwise, an error will occur. If you do not set this argument, ensure that you set `dataset_ids`.
  624. ##### page: `int`
  625. The starting index for the documents to retrieve. Defaults to `1`.
  626. ##### page_size: `int`
  627. The maximum number of chunks to retrieve. Defaults to `30`.
  628. ##### Similarity_threshold: `float`
  629. The minimum similarity score. Defaults to `0.2`.
  630. ##### vector_similarity_weight: `float`
  631. The weight of vector cosine similarity. Defaults to `0.3`. If x represents the vector cosine similarity, then (1 - x) is the term similarity weight.
  632. ##### top_k: `int`
  633. The number of chunks engaged in vector cosine computation. Defaults to `1024`.
  634. ##### rerank_id: `str`
  635. The ID of the rerank model. Defaults to `None`.
  636. ##### keyword: `bool`
  637. Indicates whether to enable keyword-based matching:
  638. - `True`: Enable keyword-based matching.
  639. - `False`: Disable keyword-based matching (default).
  640. ##### highlight: `bool`
  641. Specifies whether to enable highlighting of matched terms in the results:
  642. - `True`: Enable highlighting of matched terms.
  643. - `False`: Disable highlighting of matched terms (default).
  644. #### Returns
  645. - Success: A list of `Chunk` objects representing the document chunks.
  646. - Failure: `Exception`
  647. #### Examples
  648. ```python
  649. from ragflow_sdk import RAGFlow
  650. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  651. dataset = rag_object.list_datasets(name="ragflow")
  652. dataset = dataset[0]
  653. name = 'ragflow_test.txt'
  654. path = './test_data/ragflow_test.txt'
  655. documents =[{"display_name":"test_retrieve_chunks.txt","blob":open(path, "rb").read()}]
  656. docs = dataset.upload_documents(documents)
  657. doc = docs[0]
  658. doc.add_chunk(content="This is a chunk addition test")
  659. for c in rag_object.retrieve(dataset_ids=[dataset.id],document_ids=[doc.id]):
  660. print(c)
  661. ```
  662. ---
  663. ## CHAT ASSISTANT MANAGEMENT
  664. ---
  665. ### Create chat assistant
  666. ```python
  667. RAGFlow.create_chat(
  668. name: str,
  669. avatar: str = "",
  670. dataset_ids: list[str] = [],
  671. llm: Chat.LLM = None,
  672. prompt: Chat.Prompt = None
  673. ) -> Chat
  674. ```
  675. Creates a chat assistant.
  676. #### Parameters
  677. ##### name: `str`, *Required*
  678. The name of the chat assistant.
  679. ##### avatar: `str`
  680. Base64 encoding of the avatar. Defaults to `""`.
  681. ##### dataset_ids: `list[str]`
  682. The IDs of the associated datasets. Defaults to `[""]`.
  683. ##### llm: `Chat.LLM`
  684. The LLM settings for the chat assistant to create. Defaults to `None`. When the value is `None`, a dictionary with the following values will be generated as the default. An `LLM` object contains the following attributes:
  685. - `model_name`: `str`
  686. The chat model name. If it is `None`, the user's default chat model will be used.
  687. - `temperature`: `float`
  688. Controls the randomness of the model's predictions. A lower temperature results in more conservative responses, while a higher temperature yields more creative and diverse responses. Defaults to `0.1`.
  689. - `top_p`: `float`
  690. Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from. It focuses on the most likely words, cutting off the less probable ones. Defaults to `0.3`
  691. - `presence_penalty`: `float`
  692. This discourages the model from repeating the same information by penalizing words that have already appeared in the conversation. Defaults to `0.2`.
  693. - `frequency penalty`: `float`
  694. Similar to the presence penalty, this reduces the model’s tendency to repeat the same words frequently. Defaults to `0.7`.
  695. - `max_token`: `int`
  696. The maximum length of the model's output, measured in the number of tokens (words or pieces of words). Defaults to `512`. If disabled, you lift the maximum token limit, allowing the model to determine the number of tokens in its responses.
  697. ##### prompt: `Chat.Prompt`
  698. Instructions for the LLM to follow. A `Prompt` object contains the following attributes:
  699. - `similarity_threshold`: `float` RAGFlow employs either a combination of weighted keyword similarity and weighted vector cosine similarity, or a combination of weighted keyword similarity and weighted reranking score during retrieval. If a similarity score falls below this threshold, the corresponding chunk will be excluded from the results. The default value is `0.2`.
  700. - `keywords_similarity_weight`: `float` This argument sets the weight of keyword similarity in the hybrid similarity score with vector cosine similarity or reranking model similarity. By adjusting this weight, you can control the influence of keyword similarity in relation to other similarity measures. The default value is `0.7`.
  701. - `top_n`: `int` This argument specifies the number of top chunks with similarity scores above the `similarity_threshold` that are fed to the LLM. The LLM will *only* access these 'top N' chunks. The default value is `8`.
  702. - `variables`: `list[dict[]]` This argument lists the variables to use in the 'System' field of **Chat Configurations**. Note that:
  703. - `knowledge` is a reserved variable, which represents the retrieved chunks.
  704. - All the variables in 'System' should be curly bracketed.
  705. - The default value is `[{"key": "knowledge", "optional": True}]`.
  706. - `rerank_model`: `str` If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to `""`.
  707. - `top_k`: `int` Refers to the process of reordering or selecting the top-k items from a list or set based on a specific ranking criterion. Default to 1024.
  708. - `empty_response`: `str` If nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is found, leave this blank. Defaults to `None`.
  709. - `opener`: `str` The opening greeting for the user. Defaults to `"Hi! I am your assistant, can I help you?"`.
  710. - `show_quote`: `bool` Indicates whether the source of text should be displayed. Defaults to `True`.
  711. - `prompt`: `str` The prompt content.
  712. #### Returns
  713. - Success: A `Chat` object representing the chat assistant.
  714. - Failure: `Exception`
  715. #### Examples
  716. ```python
  717. from ragflow_sdk import RAGFlow
  718. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  719. datasets = rag_object.list_datasets(name="kb_1")
  720. dataset_ids = []
  721. for dataset in datasets:
  722. dataset_ids.append(dataset.id)
  723. assistant = rag_object.create_chat("Miss R", dataset_ids=dataset_ids)
  724. ```
  725. ---
  726. ### Update chat assistant
  727. ```python
  728. Chat.update(update_message: dict)
  729. ```
  730. Updates configurations for the current chat assistant.
  731. #### Parameters
  732. ##### update_message: `dict[str, str|list[str]|dict[]]`, *Required*
  733. A dictionary representing the attributes to update, with the following keys:
  734. - `"name"`: `str` The revised name of the chat assistant.
  735. - `"avatar"`: `str` Base64 encoding of the avatar. Defaults to `""`
  736. - `"dataset_ids"`: `list[str]` The datasets to update.
  737. - `"llm"`: `dict` The LLM settings:
  738. - `"model_name"`, `str` The chat model name.
  739. - `"temperature"`, `float` Controls the randomness of the model's predictions. A lower temperature results in more conservative responses, while a higher temperature yields more creative and diverse responses.
  740. - `"top_p"`, `float` Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from.
  741. - `"presence_penalty"`, `float` This discourages the model from repeating the same information by penalizing words that have appeared in the conversation.
  742. - `"frequency penalty"`, `float` Similar to presence penalty, this reduces the model’s tendency to repeat the same words.
  743. - `"max_token"`, `int` The maximum length of the model's output, measured in the number of tokens (words or pieces of words). Defaults to `512`. If disabled, you lift the maximum token limit, allowing the model to determine the number of tokens in its responses.
  744. - `"prompt"` : Instructions for the LLM to follow.
  745. - `"similarity_threshold"`: `float` RAGFlow employs either a combination of weighted keyword similarity and weighted vector cosine similarity, or a combination of weighted keyword similarity and weighted rerank score during retrieval. This argument sets the threshold for similarities between the user query and chunks. If a similarity score falls below this threshold, the corresponding chunk will be excluded from the results. The default value is `0.2`.
  746. - `"keywords_similarity_weight"`: `float` This argument sets the weight of keyword similarity in the hybrid similarity score with vector cosine similarity or reranking model similarity. By adjusting this weight, you can control the influence of keyword similarity in relation to other similarity measures. The default value is `0.7`.
  747. - `"top_n"`: `int` This argument specifies the number of top chunks with similarity scores above the `similarity_threshold` that are fed to the LLM. The LLM will *only* access these 'top N' chunks. The default value is `8`.
  748. - `"variables"`: `list[dict[]]` This argument lists the variables to use in the 'System' field of **Chat Configurations**. Note that:
  749. - `knowledge` is a reserved variable, which represents the retrieved chunks.
  750. - All the variables in 'System' should be curly bracketed.
  751. - The default value is `[{"key": "knowledge", "optional": True}]`.
  752. - `"rerank_model"`: `str` If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to `""`.
  753. - `"empty_response"`: `str` If nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is retrieved, leave this blank. Defaults to `None`.
  754. - `"opener"`: `str` The opening greeting for the user. Defaults to `"Hi! I am your assistant, can I help you?"`.
  755. - `"show_quote`: `bool` Indicates whether the source of text should be displayed Defaults to `True`.
  756. - `"prompt"`: `str` The prompt content.
  757. #### Returns
  758. - Success: No value is returned.
  759. - Failure: `Exception`
  760. #### Examples
  761. ```python
  762. from ragflow_sdk import RAGFlow
  763. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  764. datasets = rag_object.list_datasets(name="kb_1")
  765. dataset_id = datasets[0].id
  766. assistant = rag_object.create_chat("Miss R", dataset_ids=[dataset_id])
  767. assistant.update({"name": "Stefan", "llm": {"temperature": 0.8}, "prompt": {"top_n": 8}})
  768. ```
  769. ---
  770. ### Delete chat assistants
  771. ```python
  772. RAGFlow.delete_chats(ids: list[str] = None)
  773. ```
  774. Deletes chat assistants by ID.
  775. #### Parameters
  776. ##### ids: `list[str]`
  777. The IDs of the chat assistants to delete. Defaults to `None`. If it is empty or not specified, all chat assistants in the system will be deleted.
  778. #### Returns
  779. - Success: No value is returned.
  780. - Failure: `Exception`
  781. #### Examples
  782. ```python
  783. from ragflow_sdk import RAGFlow
  784. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  785. rag_object.delete_chats(ids=["id_1","id_2"])
  786. ```
  787. ---
  788. ### List chat assistants
  789. ```python
  790. RAGFlow.list_chats(
  791. page: int = 1,
  792. page_size: int = 30,
  793. orderby: str = "create_time",
  794. desc: bool = True,
  795. id: str = None,
  796. name: str = None
  797. ) -> list[Chat]
  798. ```
  799. Lists chat assistants.
  800. #### Parameters
  801. ##### page: `int`
  802. Specifies the page on which the chat assistants will be displayed. Defaults to `1`.
  803. ##### page_size: `int`
  804. The number of chat assistants on each page. Defaults to `30`.
  805. ##### orderby: `str`
  806. The attribute by which the results are sorted. Available options:
  807. - `"create_time"` (default)
  808. - `"update_time"`
  809. ##### desc: `bool`
  810. Indicates whether the retrieved chat assistants should be sorted in descending order. Defaults to `True`.
  811. ##### id: `str`
  812. The ID of the chat assistant to retrieve. Defaults to `None`.
  813. ##### name: `str`
  814. The name of the chat assistant to retrieve. Defaults to `None`.
  815. #### Returns
  816. - Success: A list of `Chat` objects.
  817. - Failure: `Exception`.
  818. #### Examples
  819. ```python
  820. from ragflow_sdk import RAGFlow
  821. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  822. for assistant in rag_object.list_chats():
  823. print(assistant)
  824. ```
  825. ---
  826. ## SESSION MANAGEMENT
  827. ---
  828. ### Create session with chat assistant
  829. ```python
  830. Chat.create_session(name: str = "New session") -> Session
  831. ```
  832. Creates a session with the current chat assistant.
  833. #### Parameters
  834. ##### name: `str`
  835. The name of the chat session to create.
  836. #### Returns
  837. - Success: A `Session` object containing the following attributes:
  838. - `id`: `str` The auto-generated unique identifier of the created session.
  839. - `name`: `str` The name of the created session.
  840. - `message`: `list[Message]` The opening message of the created session. Default: `[{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]`
  841. - `chat_id`: `str` The ID of the associated chat assistant.
  842. - Failure: `Exception`
  843. #### Examples
  844. ```python
  845. from ragflow_sdk import RAGFlow
  846. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  847. assistant = rag_object.list_chats(name="Miss R")
  848. assistant = assistant[0]
  849. session = assistant.create_session()
  850. ```
  851. ---
  852. ### Update chat assistant's session
  853. ```python
  854. Session.update(update_message: dict)
  855. ```
  856. Updates the current session of the current chat assistant.
  857. #### Parameters
  858. ##### update_message: `dict[str, Any]`, *Required*
  859. A dictionary representing the attributes to update, with only one key:
  860. - `"name"`: `str` The revised name of the session.
  861. #### Returns
  862. - Success: No value is returned.
  863. - Failure: `Exception`
  864. #### Examples
  865. ```python
  866. from ragflow_sdk import RAGFlow
  867. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  868. assistant = rag_object.list_chats(name="Miss R")
  869. assistant = assistant[0]
  870. session = assistant.create_session("session_name")
  871. session.update({"name": "updated_name"})
  872. ```
  873. ---
  874. ### List chat assistant's sessions
  875. ```python
  876. Chat.list_sessions(
  877. page: int = 1,
  878. page_size: int = 30,
  879. orderby: str = "create_time",
  880. desc: bool = True,
  881. id: str = None,
  882. name: str = None
  883. ) -> list[Session]
  884. ```
  885. Lists sessions associated with the current chat assistant.
  886. #### Parameters
  887. ##### page: `int`
  888. Specifies the page on which the sessions will be displayed. Defaults to `1`.
  889. ##### page_size: `int`
  890. The number of sessions on each page. Defaults to `30`.
  891. ##### orderby: `str`
  892. The field by which sessions should be sorted. Available options:
  893. - `"create_time"` (default)
  894. - `"update_time"`
  895. ##### desc: `bool`
  896. Indicates whether the retrieved sessions should be sorted in descending order. Defaults to `True`.
  897. ##### id: `str`
  898. The ID of the chat session to retrieve. Defaults to `None`.
  899. ##### name: `str`
  900. The name of the chat session to retrieve. Defaults to `None`.
  901. #### Returns
  902. - Success: A list of `Session` objects associated with the current chat assistant.
  903. - Failure: `Exception`.
  904. #### Examples
  905. ```python
  906. from ragflow_sdk import RAGFlow
  907. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  908. assistant = rag_object.list_chats(name="Miss R")
  909. assistant = assistant[0]
  910. for session in assistant.list_sessions():
  911. print(session)
  912. ```
  913. ---
  914. ### Delete chat assistant's sessions
  915. ```python
  916. Chat.delete_sessions(ids:list[str] = None)
  917. ```
  918. Deletes sessions of the current chat assistant by ID.
  919. #### Parameters
  920. ##### ids: `list[str]`
  921. The IDs of the sessions to delete. Defaults to `None`. If it is not specified, all sessions associated with the current chat assistant will be deleted.
  922. #### Returns
  923. - Success: No value is returned.
  924. - Failure: `Exception`
  925. #### Examples
  926. ```python
  927. from ragflow_sdk import RAGFlow
  928. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  929. assistant = rag_object.list_chats(name="Miss R")
  930. assistant = assistant[0]
  931. assistant.delete_sessions(ids=["id_1","id_2"])
  932. ```
  933. ---
  934. ### Converse with chat assistant
  935. ```python
  936. Session.ask(question: str = "", stream: bool = False, **kwargs) -> Optional[Message, iter[Message]]
  937. ```
  938. Asks a specified chat assistant a question to start an AI-powered conversation.
  939. :::tip NOTE
  940. In streaming mode, not all responses include a reference, as this depends on the system's judgement.
  941. :::
  942. #### Parameters
  943. ##### question: `str`, *Required*
  944. The question to start an AI-powered conversation. Default to `""`
  945. ##### stream: `bool`
  946. Indicates whether to output responses in a streaming way:
  947. - `True`: Enable streaming (default).
  948. - `False`: Disable streaming.
  949. ##### **kwargs
  950. The parameters in prompt(system).
  951. #### Returns
  952. - A `Message` object containing the response to the question if `stream` is set to `False`.
  953. - An iterator containing multiple `message` objects (`iter[Message]`) if `stream` is set to `True`
  954. The following shows the attributes of a `Message` object:
  955. ##### id: `str`
  956. The auto-generated message ID.
  957. ##### content: `str`
  958. The content of the message. Defaults to `"Hi! I am your assistant, can I help you?"`.
  959. ##### reference: `list[Chunk]`
  960. A list of `Chunk` objects representing references to the message, each containing the following attributes:
  961. - `id` `str`
  962. The chunk ID.
  963. - `content` `str`
  964. The content of the chunk.
  965. - `img_id` `str`
  966. The ID of the snapshot of the chunk. Applicable only when the source of the chunk is an image, PPT, PPTX, or PDF file.
  967. - `document_id` `str`
  968. The ID of the referenced document.
  969. - `document_name` `str`
  970. The name of the referenced document.
  971. - `position` `list[str]`
  972. The location information of the chunk within the referenced document.
  973. - `dataset_id` `str`
  974. The ID of the dataset to which the referenced document belongs.
  975. - `similarity` `float`
  976. A composite similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity. It is the weighted sum of `vector_similarity` and `term_similarity`.
  977. - `vector_similarity` `float`
  978. A vector similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity between vector embeddings.
  979. - `term_similarity` `float`
  980. A keyword similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity between keywords.
  981. #### Examples
  982. ```python
  983. from ragflow_sdk import RAGFlow
  984. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  985. assistant = rag_object.list_chats(name="Miss R")
  986. assistant = assistant[0]
  987. session = assistant.create_session()
  988. print("\n==================== Miss R =====================\n")
  989. print("Hello. What can I do for you?")
  990. while True:
  991. question = input("\n==================== User =====================\n> ")
  992. print("\n==================== Miss R =====================\n")
  993. cont = ""
  994. for ans in session.ask(question, stream=True):
  995. print(ans.content[len(cont):], end='', flush=True)
  996. cont = ans.content
  997. ```
  998. ---
  999. ### Create session with agent
  1000. ```python
  1001. Agent.create_session(**kwargs) -> Session
  1002. ```
  1003. Creates a session with the current agent.
  1004. #### Parameters
  1005. ##### **kwargs
  1006. The parameters in `begin` component.
  1007. #### Returns
  1008. - Success: A `Session` object containing the following attributes:
  1009. - `id`: `str` The auto-generated unique identifier of the created session.
  1010. - `message`: `list[Message]` The messages of the created session assistant. Default: `[{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]`
  1011. - `agent_id`: `str` The ID of the associated agent.
  1012. - Failure: `Exception`
  1013. #### Examples
  1014. ```python
  1015. from ragflow_sdk import RAGFlow, Agent
  1016. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  1017. AGENT_ID = "AGENT_ID"
  1018. agent = rag_object.list_agents(id = AGENT_id)[0]
  1019. session = agent.create_session()
  1020. ```
  1021. ---
  1022. ### Converse with agent
  1023. ```python
  1024. Session.ask(question: str="", stream: bool = False) -> Optional[Message, iter[Message]]
  1025. ```
  1026. Asks a specified agent a question to start an AI-powered conversation.
  1027. :::tip NOTE
  1028. In streaming mode, not all responses include a reference, as this depends on the system's judgement.
  1029. :::
  1030. #### Parameters
  1031. ##### question: `str`
  1032. The question to start an AI-powered conversation. Ifthe **Begin** component takes parameters, a question is not required.
  1033. ##### stream: `bool`
  1034. Indicates whether to output responses in a streaming way:
  1035. - `True`: Enable streaming (default).
  1036. - `False`: Disable streaming.
  1037. #### Returns
  1038. - A `Message` object containing the response to the question if `stream` is set to `False`
  1039. - An iterator containing multiple `message` objects (`iter[Message]`) if `stream` is set to `True`
  1040. The following shows the attributes of a `Message` object:
  1041. ##### id: `str`
  1042. The auto-generated message ID.
  1043. ##### content: `str`
  1044. The content of the message. Defaults to `"Hi! I am your assistant, can I help you?"`.
  1045. ##### reference: `list[Chunk]`
  1046. A list of `Chunk` objects representing references to the message, each containing the following attributes:
  1047. - `id` `str`
  1048. The chunk ID.
  1049. - `content` `str`
  1050. The content of the chunk.
  1051. - `image_id` `str`
  1052. The ID of the snapshot of the chunk. Applicable only when the source of the chunk is an image, PPT, PPTX, or PDF file.
  1053. - `document_id` `str`
  1054. The ID of the referenced document.
  1055. - `document_name` `str`
  1056. The name of the referenced document.
  1057. - `position` `list[str]`
  1058. The location information of the chunk within the referenced document.
  1059. - `dataset_id` `str`
  1060. The ID of the dataset to which the referenced document belongs.
  1061. - `similarity` `float`
  1062. A composite similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity. It is the weighted sum of `vector_similarity` and `term_similarity`.
  1063. - `vector_similarity` `float`
  1064. A vector similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity between vector embeddings.
  1065. - `term_similarity` `float`
  1066. A keyword similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity between keywords.
  1067. #### Examples
  1068. ```python
  1069. from ragflow_sdk import RAGFlow, Agent
  1070. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  1071. AGENT_id = "AGENT_ID"
  1072. agent = rag_object.list_agents(id = AGENT_id)[0]
  1073. session = agent.create_session()
  1074. print("\n===== Miss R ====\n")
  1075. print("Hello. What can I do for you?")
  1076. while True:
  1077. question = input("\n===== User ====\n> ")
  1078. print("\n==== Miss R ====\n")
  1079. cont = ""
  1080. for ans in session.ask(question, stream=True):
  1081. print(ans.content[len(cont):], end='', flush=True)
  1082. cont = ans.content
  1083. ```
  1084. ---
  1085. ### List agent sessions
  1086. ```python
  1087. Agent.list_sessions(
  1088. page: int = 1,
  1089. page_size: int = 30,
  1090. orderby: str = "update_time",
  1091. desc: bool = True,
  1092. id: str = None
  1093. ) -> List[Session]
  1094. ```
  1095. Lists sessions associated with the current agent.
  1096. #### Parameters
  1097. ##### page: `int`
  1098. Specifies the page on which the sessions will be displayed. Defaults to `1`.
  1099. ##### page_size: `int`
  1100. The number of sessions on each page. Defaults to `30`.
  1101. ##### orderby: `str`
  1102. The field by which sessions should be sorted. Available options:
  1103. - `"create_time"`
  1104. - `"update_time"`(default)
  1105. ##### desc: `bool`
  1106. Indicates whether the retrieved sessions should be sorted in descending order. Defaults to `True`.
  1107. ##### id: `str`
  1108. The ID of the agent session to retrieve. Defaults to `None`.
  1109. #### Returns
  1110. - Success: A list of `Session` objects associated with the current agent.
  1111. - Failure: `Exception`.
  1112. #### Examples
  1113. ```python
  1114. from ragflow_sdk import RAGFlow
  1115. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  1116. AGENT_id = "AGENT_ID"
  1117. agent = rag_object.list_agents(id = AGENT_id)[0]
  1118. sessons = agent.list_sessions()
  1119. for session in sessions:
  1120. print(session)
  1121. ```
  1122. ---
  1123. ### Delete agent's sessions
  1124. ```python
  1125. Agent.delete_sessions(ids: list[str] = None)
  1126. ```
  1127. Deletes sessions of a agent by ID.
  1128. #### Parameters
  1129. ##### ids: `list[str]`
  1130. The IDs of the sessions to delete. Defaults to `None`. If it is not specified, all sessions associated with the agent will be deleted.
  1131. #### Returns
  1132. - Success: No value is returned.
  1133. - Failure: `Exception`
  1134. #### Examples
  1135. ```python
  1136. from ragflow_sdk import RAGFlow
  1137. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  1138. AGENT_id = "AGENT_ID"
  1139. agent = rag_object.list_agents(id = AGENT_id)[0]
  1140. agent.delete_sessions(ids=["id_1","id_2"])
  1141. ```
  1142. ---
  1143. ## AGENT MANAGEMENT
  1144. ---
  1145. ### List agents
  1146. ```python
  1147. RAGFlow.list_agents(
  1148. page: int = 1,
  1149. page_size: int = 30,
  1150. orderby: str = "create_time",
  1151. desc: bool = True,
  1152. id: str = None,
  1153. title: str = None
  1154. ) -> List[Agent]
  1155. ```
  1156. Lists agents.
  1157. #### Parameters
  1158. ##### page: `int`
  1159. Specifies the page on which the agents will be displayed. Defaults to `1`.
  1160. ##### page_size: `int`
  1161. The number of agents on each page. Defaults to `30`.
  1162. ##### orderby: `str`
  1163. The attribute by which the results are sorted. Available options:
  1164. - `"create_time"` (default)
  1165. - `"update_time"`
  1166. ##### desc: `bool`
  1167. Indicates whether the retrieved agents should be sorted in descending order. Defaults to `True`.
  1168. ##### id: `str`
  1169. The ID of the agent to retrieve. Defaults to `None`.
  1170. ##### name: `str`
  1171. The name of the agent to retrieve. Defaults to `None`.
  1172. #### Returns
  1173. - Success: A list of `Agent` objects.
  1174. - Failure: `Exception`.
  1175. #### Examples
  1176. ```python
  1177. from ragflow_sdk import RAGFlow
  1178. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  1179. for agent in rag_object.list_agents():
  1180. print(agent)
  1181. ```
  1182. ---