You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

deploy_local_llm.md 6.3KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155
  1. ---
  2. sidebar_position: 5
  3. slug: /deploy_local_llm
  4. ---
  5. # Deploy a local LLM
  6. RAGFlow supports deploying models locally using Ollama or Xinference. If you have locally deployed models to leverage or wish to enable GPU or CUDA for inference acceleration, you can bind Ollama or Xinference into RAGFlow and use either of them as a local "server" for interacting with your local models.
  7. RAGFlow seamlessly integrates with Ollama and Xinference, without the need for further environment configurations. You can use them to deploy two types of local models in RAGFlow: chat models and embedding models.
  8. :::tip NOTE
  9. This user guide does not intend to cover much of the installation or configuration details of Ollama or Xinference; its focus is on configurations inside RAGFlow. For the most current information, you may need to check out the official site of Ollama or Xinference.
  10. :::
  11. ## Deploy a local model using Ollama
  12. [Ollama](https://github.com/ollama/ollama) enables you to run open-source large language models that you deployed locally. It bundles model weights, configurations, and data into a single package, defined by a Modelfile, and optimizes setup and configurations, including GPU usage.
  13. :::note
  14. - For information about downloading Ollama, see [here](https://github.com/ollama/ollama?tab=readme-ov-file#ollama).
  15. - For information about configuring Ollama server, see [here](https://github.com/ollama/ollama/blob/main/docs/faq.md#how-do-i-configure-ollama-server).
  16. - For a complete list of supported models and variants, see the [Ollama model library](https://ollama.com/library).
  17. :::
  18. To deploy a local model, e.g., **Llama3**, using Ollama:
  19. ### 1. Check firewall settings
  20. Ensure that your host machine's firewall allows inbound connections on port 11434. For example:
  21. ```bash
  22. sudo ufw allow 11434/tcp
  23. ```
  24. ### 2. Ensure Ollama is accessible
  25. Restart system and use curl or your web browser to check if the service URL of your Ollama service at `http://localhost:11434` is accessible.
  26. ```bash
  27. Ollama is running
  28. ```
  29. ### 3. Run your local model
  30. ```bash
  31. ollama run llama3
  32. ```
  33. <details>
  34. <summary>If your Ollama is installed through Docker, run the following instead:</summary>
  35. ```bash
  36. docker exec -it ollama ollama run llama3
  37. ```
  38. </details>
  39. ### 4. Add Ollama
  40. In RAGFlow, click on your logo on the top right of the page **>** **Model Providers** and add Ollama to RAGFlow:
  41. ![add ollama](https://github.com/infiniflow/ragflow/assets/93570324/10635088-028b-4b3d-add9-5c5a6e626814)
  42. ### 5. Complete basic Ollama settings
  43. In the popup window, complete basic settings for Ollama:
  44. 1. Because **llama3** is a chat model, choose **chat** as the model type.
  45. 2. Ensure that the model name you enter here *precisely* matches the name of the local model you are running with Ollama.
  46. 3. Ensure that the base URL you enter is accessible to RAGFlow.
  47. 4. OPTIONAL: Switch on the toggle under **Does it support Vision?** if your model includes an image-to-text model.
  48. :::caution NOTE
  49. - If your Ollama and RAGFlow run on the same machine, use `http://localhost:11434` as base URL.
  50. - If your Ollama and RAGFlow run on the same machine and Ollama is in Docker, use `http://host.docker.internal:11434` as base URL.
  51. - If your Ollama runs on a different machine from RAGFlow, use `http://<IP_OF_OLLAMA_MACHINE>:11434` as base URL.
  52. :::
  53. :::danger WARNING
  54. If your Ollama runs on a different machine, you may also need to set the `OLLAMA_HOST` environment variable to `0.0.0.0` in **ollama.service** (Note that this is *NOT* the base URL):
  55. ```bash
  56. Environment="OLLAMA_HOST=0.0.0.0"
  57. ```
  58. See [this guide](https://github.com/ollama/ollama/blob/main/docs/faq.md#how-do-i-configure-ollama-server) for more information.
  59. :::
  60. :::caution WARNING
  61. Improper base URL settings will trigger the following error:
  62. ```bash
  63. Max retries exceeded with url: /api/chat (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0xffff98b81ff0>: Failed to establish a new connection: [Errno 111] Connection refused'))
  64. ```
  65. :::
  66. ### 6. Update System Model Settings
  67. Click on your logo **>** **Model Providers** **>** **System Model Settings** to update your model:
  68. *You should now be able to find **llama3** from the dropdown list under **Chat model**.*
  69. > If your local model is an embedding model, you should find your local model under **Embedding model**.
  70. ### 7. Update Chat Configuration
  71. Update your chat model accordingly in **Chat Configuration**:
  72. > If your local model is an embedding model, update it on the configruation page of your knowledge base.
  73. ## Deploy a local model using Xinference
  74. Xorbits Inference([Xinference](https://github.com/xorbitsai/inference)) enables you to unleash the full potential of cutting-edge AI models.
  75. :::note
  76. - For information about installing Xinference Ollama, see [here](https://inference.readthedocs.io/en/latest/getting_started/).
  77. - For a complete list of supported models, see the [Builtin Models](https://inference.readthedocs.io/en/latest/models/builtin/).
  78. :::
  79. To deploy a local model, e.g., **Llama3**, using Xinference:
  80. ### 1. Start an Xinference instance
  81. ```bash
  82. $ xinference-local --host 0.0.0.0 --port 9997
  83. ```
  84. ### 2. Launch your local model
  85. Launch your local model (**Mistral**), ensuring that you replace `${quantization}` with your chosen quantization method
  86. :
  87. ```bash
  88. $ xinference launch -u mistral --model-name mistral-v0.1 --size-in-billions 7 --model-format pytorch --quantization ${quantization}
  89. ```
  90. ### 3. Add Xinference
  91. In RAGFlow, click on your logo on the top right of the page **>** **Model Providers** and add Xinference to RAGFlow:
  92. ![add xinference](https://github.com/infiniflow/ragflow/assets/93570324/10635088-028b-4b3d-add9-5c5a6e626814)
  93. ### 4. Complete basic Xinference settings
  94. Enter an accessible base URL, such as `http://<your-xinference-endpoint-domain>:9997/v1`.
  95. ### 5. Update System Model Settings
  96. Click on your logo **>** **Model Providers** **>** **System Model Settings** to update your model:
  97. *You should now be able to find **mistral** from the dropdown list under **Chat model**.*
  98. > If your local model is an embedding model, you should find your local model under **Embedding model**.
  99. ### 7. Update Chat Configuration
  100. Update your chat model accordingly in **Chat Configuration**:
  101. > If your local model is an embedding model, update it on the configruation page of your knowledge base.