- #
- # Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
-
- import copy
- import re
- from io import BytesIO
- from xpinyin import Pinyin
- import numpy as np
- import pandas as pd
- from collections import Counter
-
- # from openpyxl import load_workbook, Workbook
- from dateutil.parser import parse as datetime_parse
-
- from api.db.services.knowledgebase_service import KnowledgebaseService
- from deepdoc.parser.utils import get_text
- from rag.nlp import rag_tokenizer, tokenize
- from deepdoc.parser import ExcelParser
-
-
- class Excel(ExcelParser):
- def __call__(self, fnm, binary=None, from_page=0, to_page=10000000000, callback=None):
- if not binary:
- wb = Excel._load_excel_to_workbook(fnm)
- else:
- wb = Excel._load_excel_to_workbook(BytesIO(binary))
- total = 0
- for sheetname in wb.sheetnames:
- total += len(list(wb[sheetname].rows))
- res, fails, done = [], [], 0
- rn = 0
- for sheetname in wb.sheetnames:
- ws = wb[sheetname]
- rows = list(ws.rows)
- if not rows:
- continue
- headers, header_rows = self._parse_headers(ws, rows)
- if not headers:
- continue
- data = []
- for i, r in enumerate(rows[header_rows:]):
- rn += 1
- if rn - 1 < from_page:
- continue
- if rn - 1 >= to_page:
- break
- row_data = self._extract_row_data(ws, r, header_rows + i, len(headers))
- if row_data is None:
- fails.append(str(i))
- continue
- if self._is_empty_row(row_data):
- continue
- data.append(row_data)
- done += 1
- if len(data) == 0:
- continue
- df = pd.DataFrame(data, columns=headers)
- res.append(df)
- callback(0.3, ("Extract records: {}~{}".format(from_page + 1, min(to_page, from_page + rn)) + (f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
- return res
-
- def _parse_headers(self, ws, rows):
- if len(rows) == 0:
- return [], 0
- has_complex_structure = self._has_complex_header_structure(ws, rows)
- if has_complex_structure:
- return self._parse_multi_level_headers(ws, rows)
- else:
- return self._parse_simple_headers(rows)
-
- def _has_complex_header_structure(self, ws, rows):
- if len(rows) < 1:
- return False
- merged_ranges = list(ws.merged_cells.ranges)
- # 检查前两行是否涉及合并单元格
- for rng in merged_ranges:
- if rng.min_row <= 2: # 只要合并区域涉及第1或第2行
- return True
- return False
-
- def _row_looks_like_header(self, row):
- header_like_cells = 0
- data_like_cells = 0
- non_empty_cells = 0
- for cell in row:
- if cell.value is not None:
- non_empty_cells += 1
- val = str(cell.value).strip()
- if self._looks_like_header(val):
- header_like_cells += 1
- elif self._looks_like_data(val):
- data_like_cells += 1
- if non_empty_cells == 0:
- return False
- return header_like_cells >= data_like_cells
-
- def _parse_simple_headers(self, rows):
- if not rows:
- return [], 0
- header_row = rows[0]
- headers = []
- for cell in header_row:
- if cell.value is not None:
- header_value = str(cell.value).strip()
- if header_value:
- headers.append(header_value)
- else:
- pass
- final_headers = []
- for i, cell in enumerate(header_row):
- if cell.value is not None:
- header_value = str(cell.value).strip()
- if header_value:
- final_headers.append(header_value)
- else:
- final_headers.append(f"Column_{i + 1}")
- else:
- final_headers.append(f"Column_{i + 1}")
- return final_headers, 1
-
- def _parse_multi_level_headers(self, ws, rows):
- if len(rows) < 2:
- return [], 0
- header_rows = self._detect_header_rows(rows)
- if header_rows == 1:
- return self._parse_simple_headers(rows)
- else:
- return self._build_hierarchical_headers(ws, rows, header_rows), header_rows
-
- def _detect_header_rows(self, rows):
- if len(rows) < 2:
- return 1
- header_rows = 1
- max_check_rows = min(5, len(rows))
- for i in range(1, max_check_rows):
- row = rows[i]
- if self._row_looks_like_header(row):
- header_rows = i + 1
- else:
- break
- return header_rows
-
- def _looks_like_header(self, value):
- if len(value) < 1:
- return False
- if any(ord(c) > 127 for c in value):
- return True
- if len([c for c in value if c.isalpha()]) >= 2:
- return True
- if any(c in value for c in ["(", ")", ":", ":", "(", ")", "_", "-"]):
- return True
- return False
-
- def _looks_like_data(self, value):
- if len(value) == 1 and value.upper() in ["Y", "N", "M", "X", "/", "-"]:
- return True
- if value.replace(".", "").replace("-", "").replace(",", "").isdigit():
- return True
- if value.startswith("0x") and len(value) <= 10:
- return True
- return False
-
- def _build_hierarchical_headers(self, ws, rows, header_rows):
- headers = []
- max_col = max(len(row) for row in rows[:header_rows]) if header_rows > 0 else 0
- merged_ranges = list(ws.merged_cells.ranges)
- for col_idx in range(max_col):
- header_parts = []
- for row_idx in range(header_rows):
- if col_idx < len(rows[row_idx]):
- cell_value = rows[row_idx][col_idx].value
- merged_value = self._get_merged_cell_value(ws, row_idx + 1, col_idx + 1, merged_ranges)
- if merged_value is not None:
- cell_value = merged_value
- if cell_value is not None:
- cell_value = str(cell_value).strip()
- if cell_value and cell_value not in header_parts and self._is_valid_header_part(cell_value):
- header_parts.append(cell_value)
- if header_parts:
- header = "-".join(header_parts)
- headers.append(header)
- else:
- headers.append(f"Column_{col_idx + 1}")
- final_headers = [h for h in headers if h and h != "-"]
- return final_headers
-
- def _is_valid_header_part(self, value):
- if len(value) == 1 and value.upper() in ["Y", "N", "M", "X"]:
- return False
- if value.replace(".", "").replace("-", "").replace(",", "").isdigit():
- return False
- if value in ["/", "-", "+", "*", "="]:
- return False
- return True
-
- def _get_merged_cell_value(self, ws, row, col, merged_ranges):
- for merged_range in merged_ranges:
- if merged_range.min_row <= row <= merged_range.max_row and merged_range.min_col <= col <= merged_range.max_col:
- return ws.cell(merged_range.min_row, merged_range.min_col).value
- return None
-
- def _extract_row_data(self, ws, row, absolute_row_idx, expected_cols):
- row_data = []
- merged_ranges = list(ws.merged_cells.ranges)
- actual_row_num = absolute_row_idx + 1
- for col_idx in range(expected_cols):
- cell_value = None
- actual_col_num = col_idx + 1
- try:
- cell_value = ws.cell(row=actual_row_num, column=actual_col_num).value
- except ValueError:
- if col_idx < len(row):
- cell_value = row[col_idx].value
- if cell_value is None:
- merged_value = self._get_merged_cell_value(ws, actual_row_num, actual_col_num, merged_ranges)
- if merged_value is not None:
- cell_value = merged_value
- else:
- cell_value = self._get_inherited_value(ws, actual_row_num, actual_col_num, merged_ranges)
- row_data.append(cell_value)
- return row_data
-
- def _get_inherited_value(self, ws, row, col, merged_ranges):
- for merged_range in merged_ranges:
- if merged_range.min_row <= row <= merged_range.max_row and merged_range.min_col <= col <= merged_range.max_col:
- return ws.cell(merged_range.min_row, merged_range.min_col).value
- return None
-
- def _is_empty_row(self, row_data):
- for val in row_data:
- if val is not None and str(val).strip() != "":
- return False
- return True
-
-
- def trans_datatime(s):
- try:
- return datetime_parse(s.strip()).strftime("%Y-%m-%d %H:%M:%S")
- except Exception:
- pass
-
-
- def trans_bool(s):
- if re.match(r"(true|yes|是|\*|✓|✔|☑|✅|√)$", str(s).strip(), flags=re.IGNORECASE):
- return "yes"
- if re.match(r"(false|no|否|⍻|×)$", str(s).strip(), flags=re.IGNORECASE):
- return "no"
-
-
- def column_data_type(arr):
- arr = list(arr)
- counts = {"int": 0, "float": 0, "text": 0, "datetime": 0, "bool": 0}
- trans = {t: f for f, t in [(int, "int"), (float, "float"), (trans_datatime, "datetime"), (trans_bool, "bool"), (str, "text")]}
- float_flag = False
- for a in arr:
- if a is None:
- continue
- if re.match(r"[+-]?[0-9]+$", str(a).replace("%%", "")) and not str(a).replace("%%", "").startswith("0"):
- counts["int"] += 1
- if int(str(a)) > 2**63 - 1:
- float_flag = True
- break
- elif re.match(r"[+-]?[0-9.]{,19}$", str(a).replace("%%", "")) and not str(a).replace("%%", "").startswith("0"):
- counts["float"] += 1
- elif re.match(r"(true|yes|是|\*|✓|✔|☑|✅|√|false|no|否|⍻|×)$", str(a), flags=re.IGNORECASE):
- counts["bool"] += 1
- elif trans_datatime(str(a)):
- counts["datetime"] += 1
- else:
- counts["text"] += 1
- if float_flag:
- ty = "float"
- else:
- counts = sorted(counts.items(), key=lambda x: x[1] * -1)
- ty = counts[0][0]
- for i in range(len(arr)):
- if arr[i] is None:
- continue
- try:
- arr[i] = trans[ty](str(arr[i]))
- except Exception:
- arr[i] = None
- # if ty == "text":
- # if len(arr) > 128 and uni / len(arr) < 0.1:
- # ty = "keyword"
- return arr, ty
-
-
- def chunk(filename, binary=None, from_page=0, to_page=10000000000, lang="Chinese", callback=None, **kwargs):
- """
- Excel and csv(txt) format files are supported.
- For csv or txt file, the delimiter between columns is TAB.
- The first line must be column headers.
- Column headers must be meaningful terms inorder to make our NLP model understanding.
- It's good to enumerate some synonyms using slash '/' to separate, and even better to
- enumerate values using brackets like 'gender/sex(male, female)'.
- Here are some examples for headers:
- 1. supplier/vendor\tcolor(yellow, red, brown)\tgender/sex(male, female)\tsize(M,L,XL,XXL)
- 2. 姓名/名字\t电话/手机/微信\t最高学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)
-
- Every row in table will be treated as a chunk.
- """
-
- if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
- callback(0.1, "Start to parse.")
- excel_parser = Excel()
- dfs = excel_parser(filename, binary, from_page=from_page, to_page=to_page, callback=callback)
- elif re.search(r"\.(txt|csv)$", filename, re.IGNORECASE):
- callback(0.1, "Start to parse.")
- txt = get_text(filename, binary)
- lines = txt.split("\n")
- fails = []
- headers = lines[0].split(kwargs.get("delimiter", "\t"))
- rows = []
- for i, line in enumerate(lines[1:]):
- if i < from_page:
- continue
- if i >= to_page:
- break
- row = [field for field in line.split(kwargs.get("delimiter", "\t"))]
- if len(row) != len(headers):
- fails.append(str(i))
- continue
- rows.append(row)
-
- callback(0.3, ("Extract records: {}~{}".format(from_page, min(len(lines), to_page)) + (f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
-
- dfs = [pd.DataFrame(np.array(rows), columns=headers)]
-
- else:
- raise NotImplementedError("file type not supported yet(excel, text, csv supported)")
-
- res = []
- PY = Pinyin()
- fieds_map = {"text": "_tks", "int": "_long", "keyword": "_kwd", "float": "_flt", "datetime": "_dt", "bool": "_kwd"}
- for df in dfs:
- for n in ["id", "_id", "index", "idx"]:
- if n in df.columns:
- del df[n]
- clmns = df.columns.values
- if len(clmns) != len(set(clmns)):
- col_counts = Counter(clmns)
- duplicates = [col for col, count in col_counts.items() if count > 1]
- if duplicates:
- raise ValueError(f"Duplicate column names detected: {duplicates}\nFrom: {clmns}")
-
- txts = list(copy.deepcopy(clmns))
- py_clmns = [PY.get_pinyins(re.sub(r"(/.*|([^()]+?)|\([^()]+?\))", "", str(n)), "_")[0] for n in clmns]
- clmn_tys = []
- for j in range(len(clmns)):
- cln, ty = column_data_type(df[clmns[j]])
- clmn_tys.append(ty)
- df[clmns[j]] = cln
- if ty == "text":
- txts.extend([str(c) for c in cln if c])
- clmns_map = [(py_clmns[i].lower() + fieds_map[clmn_tys[i]], str(clmns[i]).replace("_", " ")) for i in range(len(clmns))]
-
- eng = lang.lower() == "english" # is_english(txts)
- for ii, row in df.iterrows():
- d = {"docnm_kwd": filename, "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))}
- row_txt = []
- for j in range(len(clmns)):
- if row[clmns[j]] is None:
- continue
- if not str(row[clmns[j]]):
- continue
- if not isinstance(row[clmns[j]], pd.Series) and pd.isna(row[clmns[j]]):
- continue
- fld = clmns_map[j][0]
- d[fld] = row[clmns[j]] if clmn_tys[j] != "text" else rag_tokenizer.tokenize(row[clmns[j]])
- row_txt.append("{}:{}".format(clmns[j], row[clmns[j]]))
- if not row_txt:
- continue
- tokenize(d, "; ".join(row_txt), eng)
- res.append(d)
-
- KnowledgebaseService.update_parser_config(kwargs["kb_id"], {"field_map": {k: v for k, v in clmns_map}})
- callback(0.35, "")
-
- return res
-
-
- if __name__ == "__main__":
- import sys
-
- def dummy(prog=None, msg=""):
- pass
-
- chunk(sys.argv[1], callback=dummy)
|