- <div align="center">
 - <a href="https://demo.ragflow.io/">
 - <img src="web/src/assets/logo-with-text.png" width="350" alt="ragflow logo">
 - </a>
 - </div>
 - 
 - <p align="center">
 -   <a href="./README.md">English</a> |
 -   <a href="./README_zh.md">简体中文</a> 
 - </p>
 - 
 - <p align="center">
 -     <a href="https://demo.ragflow.io" target="_blank">
 -         <img alt="Static Badge" src="https://img.shields.io/badge/RAGFLOW-LLM-white?&labelColor=dd0af7"></a>
 -     <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
 -         <img src="https://img.shields.io/badge/docker_pull-ragflow:v1.0-brightgreen"
 -             alt="docker pull ragflow:v1.0"></a>
 -       <a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
 -     <img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?style=flat-square&labelColor=d4eaf7&color=7d09f1" alt="license">
 -   </a>
 - </p>
 - 
 - ## 💡 What is RAGFlow?
 - 
 - [RAGFlow](https://demo.ragflow.io) is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering with well-founded citations for various complex fomatted data.
 - 
 - ## 🌟 Key Features
 - 
 - ### 🍭 **"Quality in, quality out"**
 - 
 - - Deep document understanding-based knowledge extraction from unstructured data with complicated formats.
 - - Finds "needle in a data haystack" of literally unlimited tokens.
 - 
 - ### 🍱 **Template-based chunking**
 - 
 - - Intelligent and explainable.
 - - Plenty of template options to choose from.
 - 
 - ### 🌱 **Grounded citations with reduced hallucinations**
 - 
 - - Visualization of text chunking to allow human intervention.
 - - Quick view of the key references and traceable citations to support grounded answers.
 - 
 - ### 🍔 **Compatibility with heterogeneous data sources**
 - 
 - - Supports Word, slides, excel, txt, images, scanned copies, structured data, web pages, and more.
 - 
 - ### 🛀 **Automated and effortless RAG workflow**
 - 
 - - Streamlined RAG orchestration catered to both personal and large businesses.
 - - Configurable LLMs as well as embedding models.
 - - Multiple recall paired with fused re-ranking.
 - - Intuitive APIs for seamless integration with business.
 - 
 - ## 🔎 System Architecture
 - 
 - <div align="center" style="margin-top:20px;margin-bottom:20px;">
 - <img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>
 - </div>
 - 
 - ## 🎬 Get Started
 - 
 - ### 📝 Prerequisites
 - 
 - - CPU >= 2 cores
 - - RAM >= 8 GB
 - - Docker
 -   > If you have not installed Docker on your local machine (Windows, Mac, or Linux), see [Install Docker Engine](https://docs.docker.com/engine/install/).
 - 
 - ### 🚀 Start up the server
 - 
 - 1. Ensure `vm.max_map_count` > 65535:
 - 
 -    > To check the value of `vm.max_map_count`:
 -    >
 -    > ```bash
 -    > $ sysctl vm.max_map_count
 -    > ```
 -    >
 -    > Reset `vm.max_map_count` to a value greater than 65535 if it is not.
 -    >
 -    > ```bash
 -    > # In this case, we set it to 262144:
 -    > $ sudo sysctl -w vm.max_map_count=262144
 -    > ```
 -    >
 -    > This change will be reset after a system reboot. To ensure your change remains permanent, add or update the `vm.max_map_count` value in **/etc/sysctl.conf** accordingly:
 -    >
 -    > ```bash
 -    > vm.max_map_count=262144
 -    > ```
 - 
 - 2. Clone the repo:
 - 
 -    ```bash
 -    $ git clone https://github.com/infiniflow/ragflow.git
 -    ```
 - 
 - 3. Build the pre-built Docker images and start up the server:
 - 
 -    ```bash
 -    $ cd ragflow/docker
 -    $ docker compose up -d
 -    ```
 - 
 -    > The core image is about 15 GB in size and may take a while to load.
 - 
 - 4. Check the server status after having the server up and running:
 - 
 -    ```bash
 -    $ docker logs -f ragflow-server
 -    ```
 - 
 -    _The following output confirms a successful launch of the system:_
 - 
 -    ```bash
 -        ____                 ______ __
 -       / __ \ ____ _ ____ _ / ____// /____  _      __
 -      / /_/ // __ `// __ `// /_   / // __ \| | /| / /
 -     / _, _// /_/ // /_/ // __/  / // /_/ /| |/ |/ /
 -    /_/ |_| \__,_/ \__, //_/    /_/ \____/ |__/|__/
 -                  /____/
 - 
 -     * Running on all addresses (0.0.0.0)
 -     * Running on http://127.0.0.1:9380
 -     * Running on http://172.22.0.5:9380
 -     INFO:werkzeug:Press CTRL+C to quit
 -    ```
 - 
 - 5. In your web browser, enter the IP address of your server as prompted and log in to RAGFlow.
 -    > In the given scenario, you only need to enter `http://172.22.0.5` (sans port number) as the default HTTP serving port `80` is omitted when using the default configurations.
 - 6. In [service_conf.yaml](./docker/service_conf.yaml), select the desired LLM factory in `user_default_llm` and update the `API_KEY` field with the corresponding API key.
 - 
 -    > See [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md) for more information.
 - 
 -    _The show is now on!_
 - 
 - ## 🔧 Configurations
 - 
 - When it comes to system configurations, you will need to manage the following files:
 - 
 - - [.env](./docker/.env): Keeps the fundamental setups for the system, such as `SVR_HTTP_PORT`, `MYSQL_PASSWORD`, and `MINIO_PASSWORD`.
 - - [service_conf.yaml](./docker/service_conf.yaml): Configures the back-end services.
 - - [docker-compose.yml](./docker/docker-compose.yml): The system relies on [docker-compose.yml](./docker/docker-compose.yml) to start up.
 - 
 - You must ensure that changes to the [.env](./docker/.env) file are in line with what are in the [service_conf.yaml](./docker/service_conf.yaml) file.
 - 
 - > The [./docker/README](./docker/README.md) file provides a detailed description of the environment settings and service configurations, and you are REQUIRED to ensure that all environment settings listed in the [./docker/README](./docker/README.md) file are aligned with the corresponding configurations in the [service_conf.yaml](./docker/service_conf.yaml) file.
 - 
 - To update the default HTTP serving port (80), go to [docker-compose.yml](./docker/docker-compose.yml) and change `80:80` to `<YOUR_SERVING_PORT>:80`.
 - 
 - > Updates to all system configurations require a system reboot to take effect:
 - >
 - > ```bash
 - > $ docker-compose up -d
 - > ```
 - 
 - ## 🛠️ Build from source
 - 
 - To build the Docker images from source:
 - 
 - ```bash
 - $ git clone https://github.com/infiniflow/ragflow.git
 - $ cd ragflow/
 - $ docker build -t infiniflow/ragflow:v1.0 .
 - $ cd ragflow/docker
 - $ docker compose up -d
 - ```
 - 
 - ## 📜 Roadmap
 - 
 - See the [RAGFlow Roadmap 2024](https://github.com/infiniflow/ragflow/issues/162)
 - 
 - ## 🏄 Community
 - 
 - - [Discord](https://discord.gg/uqQ4YMDf)
 - - [Twitter](https://twitter.com/infiniflowai)
 - 
 - ## 🙌 Contributing
 - 
 - RAGFlow flourishes via open-source collaboration. In this spirit, we embrace diverse contributions from the community. If you would like to be a part, review our [Contribution Guidelines](https://github.com/infiniflow/ragflow/blob/main/CONTRIBUTING.md) first.
 
 
  |