| 
                        123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197 | 
                        - #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import json
 - import logging
 - from functools import reduce, partial
 - import networkx as nx
 - 
 - from api import settings
 - from graphrag.general.community_reports_extractor import CommunityReportsExtractor
 - from graphrag.entity_resolution import EntityResolution
 - from graphrag.general.extractor import Extractor
 - from graphrag.general.graph_extractor import DEFAULT_ENTITY_TYPES
 - from graphrag.utils import graph_merge, set_entity, get_relation, set_relation, get_entity, get_graph, set_graph, \
 -     chunk_id, update_nodes_pagerank_nhop_neighbour
 - from rag.nlp import rag_tokenizer, search
 - from rag.utils.redis_conn import RedisDistributedLock
 - 
 - 
 - class Dealer:
 -     def __init__(self,
 -                  extractor: Extractor,
 -                  tenant_id: str,
 -                  kb_id: str,
 -                  llm_bdl,
 -                  chunks: list[tuple[str, str]],
 -                  language,
 -                  entity_types=DEFAULT_ENTITY_TYPES,
 -                  embed_bdl=None,
 -                  callback=None
 -                  ):
 -         docids = list(set([docid for docid,_ in chunks]))
 -         self.llm_bdl = llm_bdl
 -         self.embed_bdl = embed_bdl
 -         ext = extractor(self.llm_bdl, language=language,
 -                         entity_types=entity_types,
 -                         get_entity=partial(get_entity, tenant_id, kb_id),
 -                         set_entity=partial(set_entity, tenant_id, kb_id, self.embed_bdl),
 -                         get_relation=partial(get_relation, tenant_id, kb_id),
 -                         set_relation=partial(set_relation, tenant_id, kb_id, self.embed_bdl)
 -                         )
 -         ents, rels = ext(chunks, callback)
 -         self.graph = nx.Graph()
 -         for en in ents:
 -             self.graph.add_node(en["entity_name"], entity_type=en["entity_type"])#, description=en["description"])
 - 
 -         for rel in rels:
 -             self.graph.add_edge(
 -                 rel["src_id"],
 -                 rel["tgt_id"],
 -                 weight=rel["weight"],
 -                 #description=rel["description"]
 -             )
 - 
 -         with RedisDistributedLock(kb_id, 60*60):
 -             old_graph, old_doc_ids = get_graph(tenant_id, kb_id)
 -             if old_graph is not None:
 -                 logging.info("Merge with an exiting graph...................")
 -                 self.graph = reduce(graph_merge, [old_graph, self.graph])
 -             update_nodes_pagerank_nhop_neighbour(tenant_id, kb_id, self.graph, 2)
 -             if old_doc_ids:
 -                 docids.extend(old_doc_ids)
 -                 docids = list(set(docids))
 -             set_graph(tenant_id, kb_id, self.graph, docids)
 - 
 - 
 - class WithResolution(Dealer):
 -     def __init__(self,
 -                  tenant_id: str,
 -                  kb_id: str,
 -                  llm_bdl,
 -                  embed_bdl=None,
 -                  callback=None
 -                  ):
 -         self.llm_bdl = llm_bdl
 -         self.embed_bdl = embed_bdl
 - 
 -         with RedisDistributedLock(kb_id, 60*60):
 -             self.graph, doc_ids = get_graph(tenant_id, kb_id)
 -             if not self.graph:
 -                 logging.error(f"Faild to fetch the graph. tenant_id:{kb_id}, kb_id:{kb_id}")
 -                 if callback:
 -                     callback(-1, msg="Faild to fetch the graph.")
 -                 return
 - 
 -             if callback:
 -                 callback(msg="Fetch the existing graph.")
 -             er = EntityResolution(self.llm_bdl,
 -                                   get_entity=partial(get_entity, tenant_id, kb_id),
 -                                   set_entity=partial(set_entity, tenant_id, kb_id, self.embed_bdl),
 -                                   get_relation=partial(get_relation, tenant_id, kb_id),
 -                                   set_relation=partial(set_relation, tenant_id, kb_id, self.embed_bdl))
 -             reso = er(self.graph)
 -             self.graph = reso.graph
 -             logging.info("Graph resolution is done. Remove {} nodes.".format(len(reso.removed_entities)))
 -             if callback:
 -                 callback(msg="Graph resolution is done. Remove {} nodes.".format(len(reso.removed_entities)))
 -             update_nodes_pagerank_nhop_neighbour(tenant_id, kb_id, self.graph, 2)
 -             set_graph(tenant_id, kb_id, self.graph, doc_ids)
 - 
 -         settings.docStoreConn.delete({
 -             "knowledge_graph_kwd": "relation",
 -             "kb_id": kb_id,
 -             "from_entity_kwd": reso.removed_entities
 -         }, search.index_name(tenant_id), kb_id)
 -         settings.docStoreConn.delete({
 -             "knowledge_graph_kwd": "relation",
 -             "kb_id": kb_id,
 -             "to_entity_kwd": reso.removed_entities
 -         }, search.index_name(tenant_id), kb_id)
 -         settings.docStoreConn.delete({
 -             "knowledge_graph_kwd": "entity",
 -             "kb_id": kb_id,
 -             "entity_kwd": reso.removed_entities
 -         }, search.index_name(tenant_id), kb_id)
 - 
 - 
 - class WithCommunity(Dealer):
 -     def __init__(self,
 -                  tenant_id: str,
 -                  kb_id: str,
 -                  llm_bdl,
 -                  embed_bdl=None,
 -                  callback=None
 -                  ):
 - 
 -         self.community_structure = None
 -         self.community_reports = None
 -         self.llm_bdl = llm_bdl
 -         self.embed_bdl = embed_bdl
 - 
 -         with RedisDistributedLock(kb_id, 60*60):
 -             self.graph, doc_ids = get_graph(tenant_id, kb_id)
 -             if not self.graph:
 -                 logging.error(f"Faild to fetch the graph. tenant_id:{kb_id}, kb_id:{kb_id}")
 -                 if callback:
 -                     callback(-1, msg="Faild to fetch the graph.")
 -                 return
 -             if callback:
 -                 callback(msg="Fetch the existing graph.")
 - 
 -             cr = CommunityReportsExtractor(self.llm_bdl,
 -                                   get_entity=partial(get_entity, tenant_id, kb_id),
 -                                   set_entity=partial(set_entity, tenant_id, kb_id, self.embed_bdl),
 -                                   get_relation=partial(get_relation, tenant_id, kb_id),
 -                                   set_relation=partial(set_relation, tenant_id, kb_id, self.embed_bdl))
 -             cr = cr(self.graph, callback=callback)
 -             self.community_structure = cr.structured_output
 -             self.community_reports = cr.output
 -             set_graph(tenant_id, kb_id, self.graph, doc_ids)
 - 
 -         if callback:
 -             callback(msg="Graph community extraction is done. Indexing {} reports.".format(len(cr.structured_output)))
 - 
 -         settings.docStoreConn.delete({
 -             "knowledge_graph_kwd": "community_report",
 -             "kb_id": kb_id
 -         }, search.index_name(tenant_id), kb_id)
 - 
 -         for stru, rep in zip(self.community_structure, self.community_reports):
 -             obj = {
 -                 "report": rep,
 -                 "evidences": "\n".join([f["explanation"] for f in stru["findings"]])
 -             }
 -             chunk = {
 -                 "docnm_kwd": stru["title"],
 -                 "title_tks": rag_tokenizer.tokenize(stru["title"]),
 -                 "content_with_weight": json.dumps(obj, ensure_ascii=False),
 -                 "content_ltks": rag_tokenizer.tokenize(obj["report"] +" "+ obj["evidences"]),
 -                 "knowledge_graph_kwd": "community_report",
 -                 "weight_flt": stru["weight"],
 -                 "entities_kwd": stru["entities"],
 -                 "important_kwd": stru["entities"],
 -                 "kb_id": kb_id,
 -                 "source_id": doc_ids,
 -                 "available_int": 0
 -             }
 -             chunk["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(chunk["content_ltks"])
 -             #try:
 -             #    ebd, _ = self.embed_bdl.encode([", ".join(community["entities"])])
 -             #    chunk["q_%d_vec" % len(ebd[0])] = ebd[0]
 -             #except Exception as e:
 -             #    logging.exception(f"Fail to embed entity relation: {e}")
 -             settings.docStoreConn.insert([{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id))
 - 
 
 
  |