| 
                        123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109 | 
                        - #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import json
 - from copy import deepcopy
 - 
 - import pandas as pd
 - from elasticsearch_dsl import Q, Search
 - 
 - from rag.nlp.search import Dealer
 - 
 - 
 - class KGSearch(Dealer):
 -     def search(self, req, idxnm, emb_mdl=None, highlight=False):
 -         def merge_into_first(sres, title=""):
 -             df,texts = [],[]
 -             for d in sres["hits"]["hits"]:
 -                 try:
 -                     df.append(json.loads(d["_source"]["content_with_weight"]))
 -                 except Exception as e:
 -                     texts.append(d["_source"]["content_with_weight"])
 -                     pass
 -             if not df and not texts: return False
 -             if df:
 -                 try:
 -                     sres["hits"]["hits"][0]["_source"]["content_with_weight"] = title + "\n" + pd.DataFrame(df).to_csv()
 -                 except Exception as e:
 -                     pass
 -             else:
 -                 sres["hits"]["hits"][0]["_source"]["content_with_weight"] = title + "\n" + "\n".join(texts)
 -             return True
 - 
 -         src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id", "title_tks", "important_kwd",
 -                                  "image_id", "doc_id", "q_512_vec", "q_768_vec", "position_int", "name_kwd",
 -                                  "q_1024_vec", "q_1536_vec", "available_int", "content_with_weight",
 -                                  "weight_int", "weight_flt", "rank_int"
 -                                  ])
 - 
 -         qst = req.get("question", "")
 -         binary_query, keywords = self.qryr.question(qst, min_match="5%")
 -         binary_query = self._add_filters(binary_query, req)
 - 
 -         ## Entity retrieval
 -         bqry = deepcopy(binary_query)
 -         bqry.filter.append(Q("terms", knowledge_graph_kwd=["entity"]))
 -         s = Search()
 -         s = s.query(bqry)[0: 32]
 - 
 -         s = s.to_dict()
 -         q_vec = []
 -         if req.get("vector"):
 -             assert emb_mdl, "No embedding model selected"
 -             s["knn"] = self._vector(
 -                 qst, emb_mdl, req.get(
 -                     "similarity", 0.1), 1024)
 -             s["knn"]["filter"] = bqry.to_dict()
 -             q_vec = s["knn"]["query_vector"]
 - 
 -         ent_res = self.es.search(deepcopy(s), idxnm=idxnm, timeout="600s", src=src)
 -         entities = [d["name_kwd"] for d in self.es.getSource(ent_res)]
 -         ent_ids = self.es.getDocIds(ent_res)
 -         if merge_into_first(ent_res, "-Entities-"):
 -             ent_ids = ent_ids[0:1]
 - 
 -         ## Community retrieval
 -         bqry = deepcopy(binary_query)
 -         bqry.filter.append(Q("terms", entities_kwd=entities))
 -         bqry.filter.append(Q("terms", knowledge_graph_kwd=["community_report"]))
 -         s = Search()
 -         s = s.query(bqry)[0: 32]
 -         s = s.to_dict()
 -         comm_res = self.es.search(deepcopy(s), idxnm=idxnm, timeout="600s", src=src)
 -         comm_ids = self.es.getDocIds(comm_res)
 -         if merge_into_first(comm_res, "-Community Report-"):
 -             comm_ids = comm_ids[0:1]
 - 
 -         ## Text content retrieval
 -         bqry = deepcopy(binary_query)
 -         bqry.filter.append(Q("terms", knowledge_graph_kwd=["text"]))
 -         s = Search()
 -         s = s.query(bqry)[0: 6]
 -         s = s.to_dict()
 -         txt_res = self.es.search(deepcopy(s), idxnm=idxnm, timeout="600s", src=src)
 -         txt_ids = self.es.getDocIds(txt_res)
 -         if merge_into_first(txt_res, "-Original Content-"):
 -             txt_ids = txt_ids[0:1]
 - 
 -         return self.SearchResult(
 -             total=len(ent_ids) + len(comm_ids) + len(txt_ids),
 -             ids=[*ent_ids, *comm_ids, *txt_ids],
 -             query_vector=q_vec,
 -             aggregation=None,
 -             highlight=None,
 -             field={**self.getFields(ent_res, src), **self.getFields(comm_res, src), **self.getFields(txt_res, src)},
 -             keywords=[]
 -         )
 - 
 
 
  |