Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

python_api_reference.md 47KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713
  1. ---
  2. sidebar_position: 2
  3. slug: /python_api_reference
  4. ---
  5. # Python API
  6. A complete reference for RAGFlow's Python APIs. Before proceeding, please ensure you [have your RAGFlow API key ready for authentication](https://ragflow.io/docs/dev/acquire_ragflow_api_key).
  7. :::tip NOTE
  8. Run the following command to download the Python SDK:
  9. ```bash
  10. pip install ragflow-sdk
  11. ```
  12. :::
  13. ---
  14. ## OpenAI-Compatible API
  15. ---
  16. ### Create chat completion
  17. Creates a model response for the given historical chat conversation via OpenAI's API.
  18. #### Parameters
  19. ##### model: `str`, *Required*
  20. The model used to generate the response. The server will parse this automatically, so you can set it to any value for now.
  21. ##### messages: `list[object]`, *Required*
  22. A list of historical chat messages used to generate the response. This must contain at least one message with the `user` role.
  23. ##### stream: `boolean`
  24. Whether to receive the response as a stream. Set this to `false` explicitly if you prefer to receive the entire response in one go instead of as a stream.
  25. #### Returns
  26. - Success: Response [message](https://platform.openai.com/docs/api-reference/chat/create) like OpenAI
  27. - Failure: `Exception`
  28. #### Examples
  29. ```python
  30. from openai import OpenAI
  31. model = "model"
  32. client = OpenAI(api_key="ragflow-api-key", base_url=f"http://ragflow_address/api/v1/chats_openai/<chat_id>")
  33. completion = client.chat.completions.create(
  34. model=model,
  35. messages=[
  36. {"role": "system", "content": "You are a helpful assistant."},
  37. {"role": "user", "content": "Who are you?"},
  38. ],
  39. stream=True
  40. )
  41. stream = True
  42. if stream:
  43. for chunk in completion:
  44. print(chunk)
  45. else:
  46. print(completion.choices[0].message.content)
  47. ```
  48. ## DATASET MANAGEMENT
  49. ---
  50. ### Create dataset
  51. ```python
  52. RAGFlow.create_dataset(
  53. name: str,
  54. avatar: str = "",
  55. description: str = "",
  56. embedding_model: str = "BAAI/bge-large-zh-v1.5",
  57. language: str = "English",
  58. permission: str = "me",
  59. chunk_method: str = "naive",
  60. parser_config: DataSet.ParserConfig = None
  61. ) -> DataSet
  62. ```
  63. Creates a dataset.
  64. #### Parameters
  65. ##### name: `str`, *Required*
  66. The unique name of the dataset to create. It must adhere to the following requirements:
  67. - Permitted characters include:
  68. - English letters (a-z, A-Z)
  69. - Digits (0-9)
  70. - "_" (underscore)
  71. - Must begin with an English letter or underscore.
  72. - Maximum 65,535 characters.
  73. - Case-insensitive.
  74. ##### avatar: `str`
  75. Base64 encoding of the avatar. Defaults to `""`
  76. ##### description: `str`
  77. A brief description of the dataset to create. Defaults to `""`.
  78. ##### language: `str`
  79. The language setting of the dataset to create. Available options:
  80. - `"English"` (default)
  81. - `"Chinese"`
  82. ##### permission
  83. Specifies who can access the dataset to create. Available options:
  84. - `"me"`: (Default) Only you can manage the dataset.
  85. - `"team"`: All team members can manage the dataset.
  86. ##### chunk_method, `str`
  87. The chunking method of the dataset to create. Available options:
  88. - `"naive"`: General (default)
  89. - `"manual`: Manual
  90. - `"qa"`: Q&A
  91. - `"table"`: Table
  92. - `"paper"`: Paper
  93. - `"book"`: Book
  94. - `"laws"`: Laws
  95. - `"presentation"`: Presentation
  96. - `"picture"`: Picture
  97. - `"one"`: One
  98. - `"knowledge_graph"`: Knowledge Graph
  99. Ensure your LLM is properly configured on the **Settings** page before selecting this. Please also note that Knowledge Graph consumes a large number of Tokens!
  100. - `"email"`: Email
  101. ##### parser_config
  102. The parser configuration of the dataset. A `ParserConfig` object's attributes vary based on the selected `chunk_method`:
  103. - `chunk_method`=`"naive"`:
  104. `{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","html4excel":False,"layout_recognize":True,"raptor":{"user_raptor":False}}`.
  105. - `chunk_method`=`"qa"`:
  106. `{"raptor": {"user_raptor": False}}`
  107. - `chunk_method`=`"manuel"`:
  108. `{"raptor": {"user_raptor": False}}`
  109. - `chunk_method`=`"table"`:
  110. `None`
  111. - `chunk_method`=`"paper"`:
  112. `{"raptor": {"user_raptor": False}}`
  113. - `chunk_method`=`"book"`:
  114. `{"raptor": {"user_raptor": False}}`
  115. - `chunk_method`=`"laws"`:
  116. `{"raptor": {"user_raptor": False}}`
  117. - `chunk_method`=`"picture"`:
  118. `None`
  119. - `chunk_method`=`"presentation"`:
  120. `{"raptor": {"user_raptor": False}}`
  121. - `chunk_method`=`"one"`:
  122. `None`
  123. - `chunk_method`=`"knowledge-graph"`:
  124. `{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","entity_types":["organization","person","location","event","time"]}`
  125. - `chunk_method`=`"email"`:
  126. `None`
  127. #### Returns
  128. - Success: A `dataset` object.
  129. - Failure: `Exception`
  130. #### Examples
  131. ```python
  132. from ragflow_sdk import RAGFlow
  133. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  134. dataset = rag_object.create_dataset(name="kb_1")
  135. ```
  136. ---
  137. ### Delete datasets
  138. ```python
  139. RAGFlow.delete_datasets(ids: list[str] = None)
  140. ```
  141. Deletes datasets by ID.
  142. #### Parameters
  143. ##### ids: `list[str]`, *Required*
  144. The IDs of the datasets to delete. Defaults to `None`. If it is not specified, all datasets will be deleted.
  145. #### Returns
  146. - Success: No value is returned.
  147. - Failure: `Exception`
  148. #### Examples
  149. ```python
  150. rag_object.delete_datasets(ids=["id_1","id_2"])
  151. ```
  152. ---
  153. ### List datasets
  154. ```python
  155. RAGFlow.list_datasets(
  156. page: int = 1,
  157. page_size: int = 30,
  158. orderby: str = "create_time",
  159. desc: bool = True,
  160. id: str = None,
  161. name: str = None
  162. ) -> list[DataSet]
  163. ```
  164. Lists datasets.
  165. #### Parameters
  166. ##### page: `int`
  167. Specifies the page on which the datasets will be displayed. Defaults to `1`.
  168. ##### page_size: `int`
  169. The number of datasets on each page. Defaults to `30`.
  170. ##### orderby: `str`
  171. The field by which datasets should be sorted. Available options:
  172. - `"create_time"` (default)
  173. - `"update_time"`
  174. ##### desc: `bool`
  175. Indicates whether the retrieved datasets should be sorted in descending order. Defaults to `True`.
  176. ##### id: `str`
  177. The ID of the dataset to retrieve. Defaults to `None`.
  178. ##### name: `str`
  179. The name of the dataset to retrieve. Defaults to `None`.
  180. #### Returns
  181. - Success: A list of `DataSet` objects.
  182. - Failure: `Exception`.
  183. #### Examples
  184. ##### List all datasets
  185. ```python
  186. for dataset in rag_object.list_datasets():
  187. print(dataset)
  188. ```
  189. ##### Retrieve a dataset by ID
  190. ```python
  191. dataset = rag_object.list_datasets(id = "id_1")
  192. print(dataset[0])
  193. ```
  194. ---
  195. ### Update dataset
  196. ```python
  197. DataSet.update(update_message: dict)
  198. ```
  199. Updates configurations for the current dataset.
  200. #### Parameters
  201. ##### update_message: `dict[str, str|int]`, *Required*
  202. A dictionary representing the attributes to update, with the following keys:
  203. - `"name"`: `str` The revised name of the dataset.
  204. - `"embedding_model"`: `str` The updated embedding model name.
  205. - Ensure that `"chunk_count"` is `0` before updating `"embedding_model"`.
  206. - `"chunk_method"`: `str` The chunking method for the dataset. Available options:
  207. - `"naive"`: General
  208. - `"manual`: Manual
  209. - `"qa"`: Q&A
  210. - `"table"`: Table
  211. - `"paper"`: Paper
  212. - `"book"`: Book
  213. - `"laws"`: Laws
  214. - `"presentation"`: Presentation
  215. - `"picture"`: Picture
  216. - `"one"`: One
  217. - `"email"`: Email
  218. - `"knowledge_graph"`: Knowledge Graph
  219. Ensure your LLM is properly configured on the **Settings** page before selecting this. Please also note that Knowledge Graph consumes a large number of Tokens!
  220. - `"meta_fields"`: `dict[str, Any]` The meta fields of the dataset.
  221. #### Returns
  222. - Success: No value is returned.
  223. - Failure: `Exception`
  224. #### Examples
  225. ```python
  226. from ragflow_sdk import RAGFlow
  227. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  228. dataset = rag_object.list_datasets(name="kb_name")
  229. dataset.update({"embedding_model":"BAAI/bge-zh-v1.5", "chunk_method":"manual"})
  230. ```
  231. ---
  232. ## FILE MANAGEMENT WITHIN DATASET
  233. ---
  234. ### Upload documents
  235. ```python
  236. DataSet.upload_documents(document_list: list[dict])
  237. ```
  238. Uploads documents to the current dataset.
  239. #### Parameters
  240. ##### document_list: `list[dict]`, *Required*
  241. A list of dictionaries representing the documents to upload, each containing the following keys:
  242. - `"display_name"`: (Optional) The file name to display in the dataset.
  243. - `"blob"`: (Optional) The binary content of the file to upload.
  244. #### Returns
  245. - Success: No value is returned.
  246. - Failure: `Exception`
  247. #### Examples
  248. ```python
  249. dataset = rag_object.create_dataset(name="kb_name")
  250. dataset.upload_documents([{"display_name": "1.txt", "blob": "<BINARY_CONTENT_OF_THE_DOC>"}, {"display_name": "2.pdf", "blob": "<BINARY_CONTENT_OF_THE_DOC>"}])
  251. ```
  252. ---
  253. ### Update document
  254. ```python
  255. Document.update(update_message:dict)
  256. ```
  257. Updates configurations for the current document.
  258. #### Parameters
  259. ##### update_message: `dict[str, str|dict[]]`, *Required*
  260. A dictionary representing the attributes to update, with the following keys:
  261. - `"display_name"`: `str` The name of the document to update.
  262. - `"chunk_method"`: `str` The parsing method to apply to the document.
  263. - `"naive"`: General
  264. - `"manual`: Manual
  265. - `"qa"`: Q&A
  266. - `"table"`: Table
  267. - `"paper"`: Paper
  268. - `"book"`: Book
  269. - `"laws"`: Laws
  270. - `"presentation"`: Presentation
  271. - `"picture"`: Picture
  272. - `"one"`: One
  273. - `"knowledge_graph"`: Knowledge Graph
  274. Ensure your LLM is properly configured on the **Settings** page before selecting this. Please also note that Knowledge Graph consumes a large number of Tokens!
  275. - `"email"`: Email
  276. - `"parser_config"`: `dict[str, Any]` The parsing configuration for the document. Its attributes vary based on the selected `"chunk_method"`:
  277. - `"chunk_method"`=`"naive"`:
  278. `{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","html4excel":False,"layout_recognize":True,"raptor":{"user_raptor":False}}`.
  279. - `chunk_method`=`"qa"`:
  280. `{"raptor": {"user_raptor": False}}`
  281. - `chunk_method`=`"manuel"`:
  282. `{"raptor": {"user_raptor": False}}`
  283. - `chunk_method`=`"table"`:
  284. `None`
  285. - `chunk_method`=`"paper"`:
  286. `{"raptor": {"user_raptor": False}}`
  287. - `chunk_method`=`"book"`:
  288. `{"raptor": {"user_raptor": False}}`
  289. - `chunk_method`=`"laws"`:
  290. `{"raptor": {"user_raptor": False}}`
  291. - `chunk_method`=`"presentation"`:
  292. `{"raptor": {"user_raptor": False}}`
  293. - `chunk_method`=`"picture"`:
  294. `None`
  295. - `chunk_method`=`"one"`:
  296. `None`
  297. - `chunk_method`=`"knowledge-graph"`:
  298. `{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","entity_types":["organization","person","location","event","time"]}`
  299. - `chunk_method`=`"email"`:
  300. `None`
  301. #### Returns
  302. - Success: No value is returned.
  303. - Failure: `Exception`
  304. #### Examples
  305. ```python
  306. from ragflow_sdk import RAGFlow
  307. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  308. dataset = rag_object.list_datasets(id='id')
  309. dataset = dataset[0]
  310. doc = dataset.list_documents(id="wdfxb5t547d")
  311. doc = doc[0]
  312. doc.update([{"parser_config": {"chunk_token_count": 256}}, {"chunk_method": "manual"}])
  313. ```
  314. ---
  315. ### Download document
  316. ```python
  317. Document.download() -> bytes
  318. ```
  319. Downloads the current document.
  320. #### Returns
  321. The downloaded document in bytes.
  322. #### Examples
  323. ```python
  324. from ragflow_sdk import RAGFlow
  325. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  326. dataset = rag_object.list_datasets(id="id")
  327. dataset = dataset[0]
  328. doc = dataset.list_documents(id="wdfxb5t547d")
  329. doc = doc[0]
  330. open("~/ragflow.txt", "wb+").write(doc.download())
  331. print(doc)
  332. ```
  333. ---
  334. ### List documents
  335. ```python
  336. Dataset.list_documents(id:str =None, keywords: str=None, page: int=1, page_size:int = 30, order_by:str = "create_time", desc: bool = True) -> list[Document]
  337. ```
  338. Lists documents in the current dataset.
  339. #### Parameters
  340. ##### id: `str`
  341. The ID of the document to retrieve. Defaults to `None`.
  342. ##### keywords: `str`
  343. The keywords used to match document titles. Defaults to `None`.
  344. ##### page: `int`
  345. Specifies the page on which the documents will be displayed. Defaults to `1`.
  346. ##### page_size: `int`
  347. The maximum number of documents on each page. Defaults to `30`.
  348. ##### orderby: `str`
  349. The field by which documents should be sorted. Available options:
  350. - `"create_time"` (default)
  351. - `"update_time"`
  352. ##### desc: `bool`
  353. Indicates whether the retrieved documents should be sorted in descending order. Defaults to `True`.
  354. #### Returns
  355. - Success: A list of `Document` objects.
  356. - Failure: `Exception`.
  357. A `Document` object contains the following attributes:
  358. - `id`: The document ID. Defaults to `""`.
  359. - `name`: The document name. Defaults to `""`.
  360. - `thumbnail`: The thumbnail image of the document. Defaults to `None`.
  361. - `dataset_id`: The dataset ID associated with the document. Defaults to `None`.
  362. - `chunk_method` The chunk method name. Defaults to `"naive"`.
  363. - `source_type`: The source type of the document. Defaults to `"local"`.
  364. - `type`: Type or category of the document. Defaults to `""`. Reserved for future use.
  365. - `created_by`: `str` The creator of the document. Defaults to `""`.
  366. - `size`: `int` The document size in bytes. Defaults to `0`.
  367. - `token_count`: `int` The number of tokens in the document. Defaults to `0`.
  368. - `chunk_count`: `int` The number of chunks in the document. Defaults to `0`.
  369. - `progress`: `float` The current processing progress as a percentage. Defaults to `0.0`.
  370. - `progress_msg`: `str` A message indicating the current progress status. Defaults to `""`.
  371. - `process_begin_at`: `datetime` The start time of document processing. Defaults to `None`.
  372. - `process_duation`: `float` Duration of the processing in seconds. Defaults to `0.0`.
  373. - `run`: `str` The document's processing status:
  374. - `"UNSTART"` (default)
  375. - `"RUNNING"`
  376. - `"CANCEL"`
  377. - `"DONE"`
  378. - `"FAIL"`
  379. - `status`: `str` Reserved for future use.
  380. - `parser_config`: `ParserConfig` Configuration object for the parser. Its attributes vary based on the selected `chunk_method`:
  381. - `chunk_method`=`"naive"`:
  382. `{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","html4excel":False,"layout_recognize":True,"raptor":{"user_raptor":False}}`.
  383. - `chunk_method`=`"qa"`:
  384. `{"raptor": {"user_raptor": False}}`
  385. - `chunk_method`=`"manuel"`:
  386. `{"raptor": {"user_raptor": False}}`
  387. - `chunk_method`=`"table"`:
  388. `None`
  389. - `chunk_method`=`"paper"`:
  390. `{"raptor": {"user_raptor": False}}`
  391. - `chunk_method`=`"book"`:
  392. `{"raptor": {"user_raptor": False}}`
  393. - `chunk_method`=`"laws"`:
  394. `{"raptor": {"user_raptor": False}}`
  395. - `chunk_method`=`"presentation"`:
  396. `{"raptor": {"user_raptor": False}}`
  397. - `chunk_method`=`"picure"`:
  398. `None`
  399. - `chunk_method`=`"one"`:
  400. `None`
  401. - `chunk_method`=`"knowledge-graph"`:
  402. `{"chunk_token_num":128,"delimiter": "\\n!?;。;!?","entity_types":["organization","person","location","event","time"]}`
  403. - `chunk_method`=`"email"`:
  404. `None`
  405. #### Examples
  406. ```python
  407. from ragflow_sdk import RAGFlow
  408. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  409. dataset = rag_object.create_dataset(name="kb_1")
  410. filename1 = "~/ragflow.txt"
  411. blob = open(filename1 , "rb").read()
  412. dataset.upload_documents([{"name":filename1,"blob":blob}])
  413. for doc in dataset.list_documents(keywords="rag", page=0, page_size=12):
  414. print(doc)
  415. ```
  416. ---
  417. ### Delete documents
  418. ```python
  419. DataSet.delete_documents(ids: list[str] = None)
  420. ```
  421. Deletes documents by ID.
  422. #### Parameters
  423. ##### ids: `list[list]`
  424. The IDs of the documents to delete. Defaults to `None`. If it is not specified, all documents in the dataset will be deleted.
  425. #### Returns
  426. - Success: No value is returned.
  427. - Failure: `Exception`
  428. #### Examples
  429. ```python
  430. from ragflow_sdk import RAGFlow
  431. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  432. dataset = rag_object.list_datasets(name="kb_1")
  433. dataset = dataset[0]
  434. dataset.delete_documents(ids=["id_1","id_2"])
  435. ```
  436. ---
  437. ### Parse documents
  438. ```python
  439. DataSet.async_parse_documents(document_ids:list[str]) -> None
  440. ```
  441. Parses documents in the current dataset.
  442. #### Parameters
  443. ##### document_ids: `list[str]`, *Required*
  444. The IDs of the documents to parse.
  445. #### Returns
  446. - Success: No value is returned.
  447. - Failure: `Exception`
  448. #### Examples
  449. ```python
  450. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  451. dataset = rag_object.create_dataset(name="dataset_name")
  452. documents = [
  453. {'display_name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
  454. {'display_name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
  455. {'display_name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
  456. ]
  457. dataset.upload_documents(documents)
  458. documents = dataset.list_documents(keywords="test")
  459. ids = []
  460. for document in documents:
  461. ids.append(document.id)
  462. dataset.async_parse_documents(ids)
  463. print("Async bulk parsing initiated.")
  464. ```
  465. ---
  466. ### Stop parsing documents
  467. ```python
  468. DataSet.async_cancel_parse_documents(document_ids:list[str])-> None
  469. ```
  470. Stops parsing specified documents.
  471. #### Parameters
  472. ##### document_ids: `list[str]`, *Required*
  473. The IDs of the documents for which parsing should be stopped.
  474. #### Returns
  475. - Success: No value is returned.
  476. - Failure: `Exception`
  477. #### Examples
  478. ```python
  479. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  480. dataset = rag_object.create_dataset(name="dataset_name")
  481. documents = [
  482. {'display_name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
  483. {'display_name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
  484. {'display_name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
  485. ]
  486. dataset.upload_documents(documents)
  487. documents = dataset.list_documents(keywords="test")
  488. ids = []
  489. for document in documents:
  490. ids.append(document.id)
  491. dataset.async_parse_documents(ids)
  492. print("Async bulk parsing initiated.")
  493. dataset.async_cancel_parse_documents(ids)
  494. print("Async bulk parsing cancelled.")
  495. ```
  496. ---
  497. ## CHUNK MANAGEMENT WITHIN DATASET
  498. ---
  499. ### Add chunk
  500. ```python
  501. Document.add_chunk(content:str, important_keywords:list[str] = []) -> Chunk
  502. ```
  503. Adds a chunk to the current document.
  504. #### Parameters
  505. ##### content: `str`, *Required*
  506. The text content of the chunk.
  507. ##### important_keywords: `list[str]`
  508. The key terms or phrases to tag with the chunk.
  509. #### Returns
  510. - Success: A `Chunk` object.
  511. - Failure: `Exception`.
  512. A `Chunk` object contains the following attributes:
  513. - `id`: `str`: The chunk ID.
  514. - `content`: `str` The text content of the chunk.
  515. - `important_keywords`: `list[str]` A list of key terms or phrases tagged with the chunk.
  516. - `create_time`: `str` The time when the chunk was created (added to the document).
  517. - `create_timestamp`: `float` The timestamp representing the creation time of the chunk, expressed in seconds since January 1, 1970.
  518. - `dataset_id`: `str` The ID of the associated dataset.
  519. - `document_name`: `str` The name of the associated document.
  520. - `document_id`: `str` The ID of the associated document.
  521. - `available`: `bool` The chunk's availability status in the dataset. Value options:
  522. - `False`: Unavailable
  523. - `True`: Available (default)
  524. #### Examples
  525. ```python
  526. from ragflow_sdk import RAGFlow
  527. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  528. datasets = rag_object.list_datasets(id="123")
  529. dataset = datasets[0]
  530. doc = dataset.list_documents(id="wdfxb5t547d")
  531. doc = doc[0]
  532. chunk = doc.add_chunk(content="xxxxxxx")
  533. ```
  534. ---
  535. ### List chunks
  536. ```python
  537. Document.list_chunks(keywords: str = None, page: int = 1, page_size: int = 30, id : str = None) -> list[Chunk]
  538. ```
  539. Lists chunks in the current document.
  540. #### Parameters
  541. ##### keywords: `str`
  542. The keywords used to match chunk content. Defaults to `None`
  543. ##### page: `int`
  544. Specifies the page on which the chunks will be displayed. Defaults to `1`.
  545. ##### page_size: `int`
  546. The maximum number of chunks on each page. Defaults to `30`.
  547. ##### id: `str`
  548. The ID of the chunk to retrieve. Default: `None`
  549. #### Returns
  550. - Success: A list of `Chunk` objects.
  551. - Failure: `Exception`.
  552. #### Examples
  553. ```python
  554. from ragflow_sdk import RAGFlow
  555. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  556. dataset = rag_object.list_datasets("123")
  557. dataset = dataset[0]
  558. docs = dataset.list_documents(keywords="test", page=1, page_size=12)
  559. for chunk in docs[0].list_chunks(keywords="rag", page=0, page_size=12):
  560. print(chunk)
  561. ```
  562. ---
  563. ### Delete chunks
  564. ```python
  565. Document.delete_chunks(chunk_ids: list[str])
  566. ```
  567. Deletes chunks by ID.
  568. #### Parameters
  569. ##### chunk_ids: `list[str]`
  570. The IDs of the chunks to delete. Defaults to `None`. If it is not specified, all chunks of the current document will be deleted.
  571. #### Returns
  572. - Success: No value is returned.
  573. - Failure: `Exception`
  574. #### Examples
  575. ```python
  576. from ragflow_sdk import RAGFlow
  577. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  578. dataset = rag_object.list_datasets(id="123")
  579. dataset = dataset[0]
  580. doc = dataset.list_documents(id="wdfxb5t547d")
  581. doc = doc[0]
  582. chunk = doc.add_chunk(content="xxxxxxx")
  583. doc.delete_chunks(["id_1","id_2"])
  584. ```
  585. ---
  586. ### Update chunk
  587. ```python
  588. Chunk.update(update_message: dict)
  589. ```
  590. Updates content or configurations for the current chunk.
  591. #### Parameters
  592. ##### update_message: `dict[str, str|list[str]|int]` *Required*
  593. A dictionary representing the attributes to update, with the following keys:
  594. - `"content"`: `str` The text content of the chunk.
  595. - `"important_keywords"`: `list[str]` A list of key terms or phrases to tag with the chunk.
  596. - `"available"`: `bool` The chunk's availability status in the dataset. Value options:
  597. - `False`: Unavailable
  598. - `True`: Available (default)
  599. #### Returns
  600. - Success: No value is returned.
  601. - Failure: `Exception`
  602. #### Examples
  603. ```python
  604. from ragflow_sdk import RAGFlow
  605. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  606. dataset = rag_object.list_datasets(id="123")
  607. dataset = dataset[0]
  608. doc = dataset.list_documents(id="wdfxb5t547d")
  609. doc = doc[0]
  610. chunk = doc.add_chunk(content="xxxxxxx")
  611. chunk.update({"content":"sdfx..."})
  612. ```
  613. ---
  614. ### Retrieve chunks
  615. ```python
  616. RAGFlow.retrieve(question:str="", dataset_ids:list[str]=None, document_ids=list[str]=None, page:int=1, page_size:int=30, similarity_threshold:float=0.2, vector_similarity_weight:float=0.3, top_k:int=1024,rerank_id:str=None,keyword:bool=False,higlight:bool=False) -> list[Chunk]
  617. ```
  618. Retrieves chunks from specified datasets.
  619. #### Parameters
  620. ##### question: `str`, *Required*
  621. The user query or query keywords. Defaults to `""`.
  622. ##### dataset_ids: `list[str]`, *Required*
  623. The IDs of the datasets to search. Defaults to `None`. If you do not set this argument, ensure that you set `document_ids`.
  624. ##### document_ids: `list[str]`
  625. The IDs of the documents to search. Defaults to `None`. You must ensure all selected documents use the same embedding model. Otherwise, an error will occur. If you do not set this argument, ensure that you set `dataset_ids`.
  626. ##### page: `int`
  627. The starting index for the documents to retrieve. Defaults to `1`.
  628. ##### page_size: `int`
  629. The maximum number of chunks to retrieve. Defaults to `30`.
  630. ##### Similarity_threshold: `float`
  631. The minimum similarity score. Defaults to `0.2`.
  632. ##### vector_similarity_weight: `float`
  633. The weight of vector cosine similarity. Defaults to `0.3`. If x represents the vector cosine similarity, then (1 - x) is the term similarity weight.
  634. ##### top_k: `int`
  635. The number of chunks engaged in vector cosine computation. Defaults to `1024`.
  636. ##### rerank_id: `str`
  637. The ID of the rerank model. Defaults to `None`.
  638. ##### keyword: `bool`
  639. Indicates whether to enable keyword-based matching:
  640. - `True`: Enable keyword-based matching.
  641. - `False`: Disable keyword-based matching (default).
  642. ##### highlight: `bool`
  643. Specifies whether to enable highlighting of matched terms in the results:
  644. - `True`: Enable highlighting of matched terms.
  645. - `False`: Disable highlighting of matched terms (default).
  646. #### Returns
  647. - Success: A list of `Chunk` objects representing the document chunks.
  648. - Failure: `Exception`
  649. #### Examples
  650. ```python
  651. from ragflow_sdk import RAGFlow
  652. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  653. dataset = rag_object.list_datasets(name="ragflow")
  654. dataset = dataset[0]
  655. name = 'ragflow_test.txt'
  656. path = './test_data/ragflow_test.txt'
  657. documents =[{"display_name":"test_retrieve_chunks.txt","blob":open(path, "rb").read()}]
  658. docs = dataset.upload_documents(documents)
  659. doc = docs[0]
  660. doc.add_chunk(content="This is a chunk addition test")
  661. for c in rag_object.retrieve(dataset_ids=[dataset.id],document_ids=[doc.id]):
  662. print(c)
  663. ```
  664. ---
  665. ## CHAT ASSISTANT MANAGEMENT
  666. ---
  667. ### Create chat assistant
  668. ```python
  669. RAGFlow.create_chat(
  670. name: str,
  671. avatar: str = "",
  672. dataset_ids: list[str] = [],
  673. llm: Chat.LLM = None,
  674. prompt: Chat.Prompt = None
  675. ) -> Chat
  676. ```
  677. Creates a chat assistant.
  678. #### Parameters
  679. ##### name: `str`, *Required*
  680. The name of the chat assistant.
  681. ##### avatar: `str`
  682. Base64 encoding of the avatar. Defaults to `""`.
  683. ##### dataset_ids: `list[str]`
  684. The IDs of the associated datasets. Defaults to `[""]`.
  685. ##### llm: `Chat.LLM`
  686. The LLM settings for the chat assistant to create. Defaults to `None`. When the value is `None`, a dictionary with the following values will be generated as the default. An `LLM` object contains the following attributes:
  687. - `model_name`: `str`
  688. The chat model name. If it is `None`, the user's default chat model will be used.
  689. - `temperature`: `float`
  690. Controls the randomness of the model's predictions. A lower temperature results in more conservative responses, while a higher temperature yields more creative and diverse responses. Defaults to `0.1`.
  691. - `top_p`: `float`
  692. Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from. It focuses on the most likely words, cutting off the less probable ones. Defaults to `0.3`
  693. - `presence_penalty`: `float`
  694. This discourages the model from repeating the same information by penalizing words that have already appeared in the conversation. Defaults to `0.2`.
  695. - `frequency penalty`: `float`
  696. Similar to the presence penalty, this reduces the model’s tendency to repeat the same words frequently. Defaults to `0.7`.
  697. - `max_token`: `int`
  698. The maximum length of the model's output, measured in the number of tokens (words or pieces of words). Defaults to `512`. If disabled, you lift the maximum token limit, allowing the model to determine the number of tokens in its responses.
  699. ##### prompt: `Chat.Prompt`
  700. Instructions for the LLM to follow. A `Prompt` object contains the following attributes:
  701. - `similarity_threshold`: `float` RAGFlow employs either a combination of weighted keyword similarity and weighted vector cosine similarity, or a combination of weighted keyword similarity and weighted reranking score during retrieval. If a similarity score falls below this threshold, the corresponding chunk will be excluded from the results. The default value is `0.2`.
  702. - `keywords_similarity_weight`: `float` This argument sets the weight of keyword similarity in the hybrid similarity score with vector cosine similarity or reranking model similarity. By adjusting this weight, you can control the influence of keyword similarity in relation to other similarity measures. The default value is `0.7`.
  703. - `top_n`: `int` This argument specifies the number of top chunks with similarity scores above the `similarity_threshold` that are fed to the LLM. The LLM will *only* access these 'top N' chunks. The default value is `8`.
  704. - `variables`: `list[dict[]]` This argument lists the variables to use in the 'System' field of **Chat Configurations**. Note that:
  705. - `knowledge` is a reserved variable, which represents the retrieved chunks.
  706. - All the variables in 'System' should be curly bracketed.
  707. - The default value is `[{"key": "knowledge", "optional": True}]`.
  708. - `rerank_model`: `str` If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to `""`.
  709. - `top_k`: `int` Refers to the process of reordering or selecting the top-k items from a list or set based on a specific ranking criterion. Default to 1024.
  710. - `empty_response`: `str` If nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is found, leave this blank. Defaults to `None`.
  711. - `opener`: `str` The opening greeting for the user. Defaults to `"Hi! I am your assistant, can I help you?"`.
  712. - `show_quote`: `bool` Indicates whether the source of text should be displayed. Defaults to `True`.
  713. - `prompt`: `str` The prompt content.
  714. #### Returns
  715. - Success: A `Chat` object representing the chat assistant.
  716. - Failure: `Exception`
  717. #### Examples
  718. ```python
  719. from ragflow_sdk import RAGFlow
  720. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  721. datasets = rag_object.list_datasets(name="kb_1")
  722. dataset_ids = []
  723. for dataset in datasets:
  724. dataset_ids.append(dataset.id)
  725. assistant = rag_object.create_chat("Miss R", dataset_ids=dataset_ids)
  726. ```
  727. ---
  728. ### Update chat assistant
  729. ```python
  730. Chat.update(update_message: dict)
  731. ```
  732. Updates configurations for the current chat assistant.
  733. #### Parameters
  734. ##### update_message: `dict[str, str|list[str]|dict[]]`, *Required*
  735. A dictionary representing the attributes to update, with the following keys:
  736. - `"name"`: `str` The revised name of the chat assistant.
  737. - `"avatar"`: `str` Base64 encoding of the avatar. Defaults to `""`
  738. - `"dataset_ids"`: `list[str]` The datasets to update.
  739. - `"llm"`: `dict` The LLM settings:
  740. - `"model_name"`, `str` The chat model name.
  741. - `"temperature"`, `float` Controls the randomness of the model's predictions. A lower temperature results in more conservative responses, while a higher temperature yields more creative and diverse responses.
  742. - `"top_p"`, `float` Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from.
  743. - `"presence_penalty"`, `float` This discourages the model from repeating the same information by penalizing words that have appeared in the conversation.
  744. - `"frequency penalty"`, `float` Similar to presence penalty, this reduces the model’s tendency to repeat the same words.
  745. - `"max_token"`, `int` The maximum length of the model's output, measured in the number of tokens (words or pieces of words). Defaults to `512`. If disabled, you lift the maximum token limit, allowing the model to determine the number of tokens in its responses.
  746. - `"prompt"` : Instructions for the LLM to follow.
  747. - `"similarity_threshold"`: `float` RAGFlow employs either a combination of weighted keyword similarity and weighted vector cosine similarity, or a combination of weighted keyword similarity and weighted rerank score during retrieval. This argument sets the threshold for similarities between the user query and chunks. If a similarity score falls below this threshold, the corresponding chunk will be excluded from the results. The default value is `0.2`.
  748. - `"keywords_similarity_weight"`: `float` This argument sets the weight of keyword similarity in the hybrid similarity score with vector cosine similarity or reranking model similarity. By adjusting this weight, you can control the influence of keyword similarity in relation to other similarity measures. The default value is `0.7`.
  749. - `"top_n"`: `int` This argument specifies the number of top chunks with similarity scores above the `similarity_threshold` that are fed to the LLM. The LLM will *only* access these 'top N' chunks. The default value is `8`.
  750. - `"variables"`: `list[dict[]]` This argument lists the variables to use in the 'System' field of **Chat Configurations**. Note that:
  751. - `knowledge` is a reserved variable, which represents the retrieved chunks.
  752. - All the variables in 'System' should be curly bracketed.
  753. - The default value is `[{"key": "knowledge", "optional": True}]`.
  754. - `"rerank_model"`: `str` If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to `""`.
  755. - `"empty_response"`: `str` If nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is retrieved, leave this blank. Defaults to `None`.
  756. - `"opener"`: `str` The opening greeting for the user. Defaults to `"Hi! I am your assistant, can I help you?"`.
  757. - `"show_quote`: `bool` Indicates whether the source of text should be displayed Defaults to `True`.
  758. - `"prompt"`: `str` The prompt content.
  759. #### Returns
  760. - Success: No value is returned.
  761. - Failure: `Exception`
  762. #### Examples
  763. ```python
  764. from ragflow_sdk import RAGFlow
  765. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  766. datasets = rag_object.list_datasets(name="kb_1")
  767. dataset_id = datasets[0].id
  768. assistant = rag_object.create_chat("Miss R", dataset_ids=[dataset_id])
  769. assistant.update({"name": "Stefan", "llm": {"temperature": 0.8}, "prompt": {"top_n": 8}})
  770. ```
  771. ---
  772. ### Delete chat assistants
  773. ```python
  774. RAGFlow.delete_chats(ids: list[str] = None)
  775. ```
  776. Deletes chat assistants by ID.
  777. #### Parameters
  778. ##### ids: `list[str]`
  779. The IDs of the chat assistants to delete. Defaults to `None`. If it is empty or not specified, all chat assistants in the system will be deleted.
  780. #### Returns
  781. - Success: No value is returned.
  782. - Failure: `Exception`
  783. #### Examples
  784. ```python
  785. from ragflow_sdk import RAGFlow
  786. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  787. rag_object.delete_chats(ids=["id_1","id_2"])
  788. ```
  789. ---
  790. ### List chat assistants
  791. ```python
  792. RAGFlow.list_chats(
  793. page: int = 1,
  794. page_size: int = 30,
  795. orderby: str = "create_time",
  796. desc: bool = True,
  797. id: str = None,
  798. name: str = None
  799. ) -> list[Chat]
  800. ```
  801. Lists chat assistants.
  802. #### Parameters
  803. ##### page: `int`
  804. Specifies the page on which the chat assistants will be displayed. Defaults to `1`.
  805. ##### page_size: `int`
  806. The number of chat assistants on each page. Defaults to `30`.
  807. ##### orderby: `str`
  808. The attribute by which the results are sorted. Available options:
  809. - `"create_time"` (default)
  810. - `"update_time"`
  811. ##### desc: `bool`
  812. Indicates whether the retrieved chat assistants should be sorted in descending order. Defaults to `True`.
  813. ##### id: `str`
  814. The ID of the chat assistant to retrieve. Defaults to `None`.
  815. ##### name: `str`
  816. The name of the chat assistant to retrieve. Defaults to `None`.
  817. #### Returns
  818. - Success: A list of `Chat` objects.
  819. - Failure: `Exception`.
  820. #### Examples
  821. ```python
  822. from ragflow_sdk import RAGFlow
  823. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  824. for assistant in rag_object.list_chats():
  825. print(assistant)
  826. ```
  827. ---
  828. ## SESSION MANAGEMENT
  829. ---
  830. ### Create session with chat assistant
  831. ```python
  832. Chat.create_session(name: str = "New session") -> Session
  833. ```
  834. Creates a session with the current chat assistant.
  835. #### Parameters
  836. ##### name: `str`
  837. The name of the chat session to create.
  838. #### Returns
  839. - Success: A `Session` object containing the following attributes:
  840. - `id`: `str` The auto-generated unique identifier of the created session.
  841. - `name`: `str` The name of the created session.
  842. - `message`: `list[Message]` The opening message of the created session. Default: `[{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]`
  843. - `chat_id`: `str` The ID of the associated chat assistant.
  844. - Failure: `Exception`
  845. #### Examples
  846. ```python
  847. from ragflow_sdk import RAGFlow
  848. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  849. assistant = rag_object.list_chats(name="Miss R")
  850. assistant = assistant[0]
  851. session = assistant.create_session()
  852. ```
  853. ---
  854. ### Update chat assistant's session
  855. ```python
  856. Session.update(update_message: dict)
  857. ```
  858. Updates the current session of the current chat assistant.
  859. #### Parameters
  860. ##### update_message: `dict[str, Any]`, *Required*
  861. A dictionary representing the attributes to update, with only one key:
  862. - `"name"`: `str` The revised name of the session.
  863. #### Returns
  864. - Success: No value is returned.
  865. - Failure: `Exception`
  866. #### Examples
  867. ```python
  868. from ragflow_sdk import RAGFlow
  869. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  870. assistant = rag_object.list_chats(name="Miss R")
  871. assistant = assistant[0]
  872. session = assistant.create_session("session_name")
  873. session.update({"name": "updated_name"})
  874. ```
  875. ---
  876. ### List chat assistant's sessions
  877. ```python
  878. Chat.list_sessions(
  879. page: int = 1,
  880. page_size: int = 30,
  881. orderby: str = "create_time",
  882. desc: bool = True,
  883. id: str = None,
  884. name: str = None
  885. ) -> list[Session]
  886. ```
  887. Lists sessions associated with the current chat assistant.
  888. #### Parameters
  889. ##### page: `int`
  890. Specifies the page on which the sessions will be displayed. Defaults to `1`.
  891. ##### page_size: `int`
  892. The number of sessions on each page. Defaults to `30`.
  893. ##### orderby: `str`
  894. The field by which sessions should be sorted. Available options:
  895. - `"create_time"` (default)
  896. - `"update_time"`
  897. ##### desc: `bool`
  898. Indicates whether the retrieved sessions should be sorted in descending order. Defaults to `True`.
  899. ##### id: `str`
  900. The ID of the chat session to retrieve. Defaults to `None`.
  901. ##### name: `str`
  902. The name of the chat session to retrieve. Defaults to `None`.
  903. #### Returns
  904. - Success: A list of `Session` objects associated with the current chat assistant.
  905. - Failure: `Exception`.
  906. #### Examples
  907. ```python
  908. from ragflow_sdk import RAGFlow
  909. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  910. assistant = rag_object.list_chats(name="Miss R")
  911. assistant = assistant[0]
  912. for session in assistant.list_sessions():
  913. print(session)
  914. ```
  915. ---
  916. ### Delete chat assistant's sessions
  917. ```python
  918. Chat.delete_sessions(ids:list[str] = None)
  919. ```
  920. Deletes sessions of the current chat assistant by ID.
  921. #### Parameters
  922. ##### ids: `list[str]`
  923. The IDs of the sessions to delete. Defaults to `None`. If it is not specified, all sessions associated with the current chat assistant will be deleted.
  924. #### Returns
  925. - Success: No value is returned.
  926. - Failure: `Exception`
  927. #### Examples
  928. ```python
  929. from ragflow_sdk import RAGFlow
  930. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  931. assistant = rag_object.list_chats(name="Miss R")
  932. assistant = assistant[0]
  933. assistant.delete_sessions(ids=["id_1","id_2"])
  934. ```
  935. ---
  936. ### Converse with chat assistant
  937. ```python
  938. Session.ask(question: str = "", stream: bool = False, **kwargs) -> Optional[Message, iter[Message]]
  939. ```
  940. Asks a specified chat assistant a question to start an AI-powered conversation.
  941. :::tip NOTE
  942. In streaming mode, not all responses include a reference, as this depends on the system's judgement.
  943. :::
  944. #### Parameters
  945. ##### question: `str`, *Required*
  946. The question to start an AI-powered conversation. Default to `""`
  947. ##### stream: `bool`
  948. Indicates whether to output responses in a streaming way:
  949. - `True`: Enable streaming (default).
  950. - `False`: Disable streaming.
  951. ##### **kwargs
  952. The parameters in prompt(system).
  953. #### Returns
  954. - A `Message` object containing the response to the question if `stream` is set to `False`.
  955. - An iterator containing multiple `message` objects (`iter[Message]`) if `stream` is set to `True`
  956. The following shows the attributes of a `Message` object:
  957. ##### id: `str`
  958. The auto-generated message ID.
  959. ##### content: `str`
  960. The content of the message. Defaults to `"Hi! I am your assistant, can I help you?"`.
  961. ##### reference: `list[Chunk]`
  962. A list of `Chunk` objects representing references to the message, each containing the following attributes:
  963. - `id` `str`
  964. The chunk ID.
  965. - `content` `str`
  966. The content of the chunk.
  967. - `img_id` `str`
  968. The ID of the snapshot of the chunk. Applicable only when the source of the chunk is an image, PPT, PPTX, or PDF file.
  969. - `document_id` `str`
  970. The ID of the referenced document.
  971. - `document_name` `str`
  972. The name of the referenced document.
  973. - `position` `list[str]`
  974. The location information of the chunk within the referenced document.
  975. - `dataset_id` `str`
  976. The ID of the dataset to which the referenced document belongs.
  977. - `similarity` `float`
  978. A composite similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity. It is the weighted sum of `vector_similarity` and `term_similarity`.
  979. - `vector_similarity` `float`
  980. A vector similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity between vector embeddings.
  981. - `term_similarity` `float`
  982. A keyword similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity between keywords.
  983. #### Examples
  984. ```python
  985. from ragflow_sdk import RAGFlow
  986. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  987. assistant = rag_object.list_chats(name="Miss R")
  988. assistant = assistant[0]
  989. session = assistant.create_session()
  990. print("\n==================== Miss R =====================\n")
  991. print("Hello. What can I do for you?")
  992. while True:
  993. question = input("\n==================== User =====================\n> ")
  994. print("\n==================== Miss R =====================\n")
  995. cont = ""
  996. for ans in session.ask(question, stream=True):
  997. print(ans.content[len(cont):], end='', flush=True)
  998. cont = ans.content
  999. ```
  1000. ---
  1001. ### Create session with agent
  1002. ```python
  1003. Agent.create_session(id,rag, **kwargs) -> Session
  1004. ```
  1005. Creates a session with the current agent.
  1006. #### Parameters
  1007. ##### id: `str`, *Required*
  1008. The id of agent
  1009. ##### rag:`RAGFlow object`
  1010. The RAGFlow object
  1011. ##### **kwargs
  1012. The parameters in `begin` component.
  1013. #### Returns
  1014. - Success: A `Session` object containing the following attributes:
  1015. - `id`: `str` The auto-generated unique identifier of the created session.
  1016. - `message`: `list[Message]` The messages of the created session assistant. Default: `[{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]`
  1017. - `agent_id`: `str` The ID of the associated agent.
  1018. - Failure: `Exception`
  1019. #### Examples
  1020. ```python
  1021. from ragflow_sdk import RAGFlow, Agent
  1022. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  1023. AGENT_ID = "AGENT_ID"
  1024. session = Agent.create_session(AGENT_ID, rag_object)
  1025. ```
  1026. ---
  1027. ### Converse with agent
  1028. ```python
  1029. Session.ask(question: str="", stream: bool = False) -> Optional[Message, iter[Message]]
  1030. ```
  1031. Asks a specified agent a question to start an AI-powered conversation.
  1032. :::tip NOTE
  1033. In streaming mode, not all responses include a reference, as this depends on the system's judgement.
  1034. :::
  1035. #### Parameters
  1036. ##### question: `str`
  1037. The question to start an AI-powered conversation. Ifthe **Begin** component takes parameters, a question is not required.
  1038. ##### stream: `bool`
  1039. Indicates whether to output responses in a streaming way:
  1040. - `True`: Enable streaming (default).
  1041. - `False`: Disable streaming.
  1042. #### Returns
  1043. - A `Message` object containing the response to the question if `stream` is set to `False`
  1044. - An iterator containing multiple `message` objects (`iter[Message]`) if `stream` is set to `True`
  1045. The following shows the attributes of a `Message` object:
  1046. ##### id: `str`
  1047. The auto-generated message ID.
  1048. ##### content: `str`
  1049. The content of the message. Defaults to `"Hi! I am your assistant, can I help you?"`.
  1050. ##### reference: `list[Chunk]`
  1051. A list of `Chunk` objects representing references to the message, each containing the following attributes:
  1052. - `id` `str`
  1053. The chunk ID.
  1054. - `content` `str`
  1055. The content of the chunk.
  1056. - `image_id` `str`
  1057. The ID of the snapshot of the chunk. Applicable only when the source of the chunk is an image, PPT, PPTX, or PDF file.
  1058. - `document_id` `str`
  1059. The ID of the referenced document.
  1060. - `document_name` `str`
  1061. The name of the referenced document.
  1062. - `position` `list[str]`
  1063. The location information of the chunk within the referenced document.
  1064. - `dataset_id` `str`
  1065. The ID of the dataset to which the referenced document belongs.
  1066. - `similarity` `float`
  1067. A composite similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity. It is the weighted sum of `vector_similarity` and `term_similarity`.
  1068. - `vector_similarity` `float`
  1069. A vector similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity between vector embeddings.
  1070. - `term_similarity` `float`
  1071. A keyword similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity between keywords.
  1072. #### Examples
  1073. ```python
  1074. from ragflow_sdk import RAGFlow, Agent
  1075. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  1076. AGENT_id = "AGENT_ID"
  1077. session = Agent.create_session(AGENT_id, rag_object)
  1078. print("\n===== Miss R ====\n")
  1079. print("Hello. What can I do for you?")
  1080. while True:
  1081. question = input("\n===== User ====\n> ")
  1082. print("\n==== Miss R ====\n")
  1083. cont = ""
  1084. for ans in session.ask(question, stream=True):
  1085. print(ans.content[len(cont):], end='', flush=True)
  1086. cont = ans.content
  1087. ```
  1088. ---
  1089. ### List agent sessions
  1090. ```python
  1091. Agent.list_sessions(
  1092. agent_id,
  1093. rag
  1094. page: int = 1,
  1095. page_size: int = 30,
  1096. orderby: str = "update_time",
  1097. desc: bool = True,
  1098. id: str = None
  1099. ) -> List[Session]
  1100. ```
  1101. Lists sessions associated with the current agent.
  1102. #### Parameters
  1103. ##### page: `int`
  1104. Specifies the page on which the sessions will be displayed. Defaults to `1`.
  1105. ##### page_size: `int`
  1106. The number of sessions on each page. Defaults to `30`.
  1107. ##### orderby: `str`
  1108. The field by which sessions should be sorted. Available options:
  1109. - `"create_time"`
  1110. - `"update_time"`(default)
  1111. ##### desc: `bool`
  1112. Indicates whether the retrieved sessions should be sorted in descending order. Defaults to `True`.
  1113. ##### id: `str`
  1114. The ID of the agent session to retrieve. Defaults to `None`.
  1115. #### Returns
  1116. - Success: A list of `Session` objects associated with the current agent.
  1117. - Failure: `Exception`.
  1118. #### Examples
  1119. ```python
  1120. from ragflow_sdk import RAGFlow
  1121. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  1122. agent_id = "2710f2269b4611ef8fdf0242ac120006"
  1123. sessions=Agent.list_sessions(agent_id,rag_object)
  1124. for session in sessions:
  1125. print(session)
  1126. ```
  1127. ---
  1128. ## AGENT MANAGEMENT
  1129. ---
  1130. ### List agents
  1131. ```python
  1132. RAGFlow.list_agents(
  1133. page: int = 1,
  1134. page_size: int = 30,
  1135. orderby: str = "create_time",
  1136. desc: bool = True,
  1137. id: str = None,
  1138. title: str = None
  1139. ) -> List[Agent]
  1140. ```
  1141. Lists agents.
  1142. #### Parameters
  1143. ##### page: `int`
  1144. Specifies the page on which the agents will be displayed. Defaults to `1`.
  1145. ##### page_size: `int`
  1146. The number of agents on each page. Defaults to `30`.
  1147. ##### orderby: `str`
  1148. The attribute by which the results are sorted. Available options:
  1149. - `"create_time"` (default)
  1150. - `"update_time"`
  1151. ##### desc: `bool`
  1152. Indicates whether the retrieved agents should be sorted in descending order. Defaults to `True`.
  1153. ##### id: `str`
  1154. The ID of the agent to retrieve. Defaults to `None`.
  1155. ##### name: `str`
  1156. The name of the agent to retrieve. Defaults to `None`.
  1157. #### Returns
  1158. - Success: A list of `Agent` objects.
  1159. - Failure: `Exception`.
  1160. #### Examples
  1161. ```python
  1162. from ragflow_sdk import RAGFlow
  1163. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  1164. for agent in rag_object.list_agents():
  1165. print(agent)
  1166. ```
  1167. ---