- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import logging
 - import re
 - import umap
 - import numpy as np
 - from sklearn.mixture import GaussianMixture
 - import trio
 - 
 - from graphrag.utils import (
 -     get_llm_cache,
 -     get_embed_cache,
 -     set_embed_cache,
 -     set_llm_cache,
 -     chat_limiter,
 - )
 - from rag.utils import truncate
 - 
 - 
 - class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
 -     def __init__(
 -         self, max_cluster, llm_model, embd_model, prompt, max_token=512, threshold=0.1
 -     ):
 -         self._max_cluster = max_cluster
 -         self._llm_model = llm_model
 -         self._embd_model = embd_model
 -         self._threshold = threshold
 -         self._prompt = prompt
 -         self._max_token = max_token
 - 
 -     async def _chat(self, system, history, gen_conf):
 -         response = get_llm_cache(self._llm_model.llm_name, system, history, gen_conf)
 -         if response:
 -             return response
 -         response = await trio.to_thread.run_sync(
 -             lambda: self._llm_model.chat(system, history, gen_conf)
 -         )
 -         response = re.sub(r"^.*</think>", "", response, flags=re.DOTALL)
 -         if response.find("**ERROR**") >= 0:
 -             raise Exception(response)
 -         set_llm_cache(self._llm_model.llm_name, system, response, history, gen_conf)
 -         return response
 - 
 -     async def _embedding_encode(self, txt):
 -         response = get_embed_cache(self._embd_model.llm_name, txt)
 -         if response is not None:
 -             return response
 -         embds, _ = await trio.to_thread.run_sync(lambda: self._embd_model.encode([txt]))
 -         if len(embds) < 1 or len(embds[0]) < 1:
 -             raise Exception("Embedding error: ")
 -         embds = embds[0]
 -         set_embed_cache(self._embd_model.llm_name, txt, embds)
 -         return embds
 - 
 -     def _get_optimal_clusters(self, embeddings: np.ndarray, random_state: int):
 -         max_clusters = min(self._max_cluster, len(embeddings))
 -         n_clusters = np.arange(1, max_clusters)
 -         bics = []
 -         for n in n_clusters:
 -             gm = GaussianMixture(n_components=n, random_state=random_state)
 -             gm.fit(embeddings)
 -             bics.append(gm.bic(embeddings))
 -         optimal_clusters = n_clusters[np.argmin(bics)]
 -         return optimal_clusters
 - 
 -     async def __call__(self, chunks, random_state, callback=None):
 -         if len(chunks) <= 1:
 -             return []
 -         chunks = [(s, a) for s, a in chunks if s and len(a) > 0]
 -         layers = [(0, len(chunks))]
 -         start, end = 0, len(chunks)
 - 
 -         async def summarize(ck_idx: list[int]):
 -             nonlocal chunks
 -             texts = [chunks[i][0] for i in ck_idx]
 -             len_per_chunk = int(
 -                 (self._llm_model.max_length - self._max_token) / len(texts)
 -             )
 -             cluster_content = "\n".join(
 -                 [truncate(t, max(1, len_per_chunk)) for t in texts]
 -             )
 -             async with chat_limiter:
 -                 cnt = await self._chat(
 -                     "You're a helpful assistant.",
 -                     [
 -                         {
 -                             "role": "user",
 -                             "content": self._prompt.format(
 -                                 cluster_content=cluster_content
 -                             ),
 -                         }
 -                     ],
 -                     {"temperature": 0.3, "max_tokens": self._max_token},
 -                 )
 -             cnt = re.sub(
 -                 "(······\n由于长度的原因,回答被截断了,要继续吗?|For the content length reason, it stopped, continue?)",
 -                 "",
 -                 cnt,
 -             )
 -             logging.debug(f"SUM: {cnt}")
 -             embds = await self._embedding_encode(cnt)
 -             chunks.append((cnt, embds))
 - 
 -         labels = []
 -         while end - start > 1:
 -             embeddings = [embd for _, embd in chunks[start:end]]
 -             if len(embeddings) == 2:
 -                 await summarize([start, start + 1])
 -                 if callback:
 -                     callback(
 -                         msg="Cluster one layer: {} -> {}".format(
 -                             end - start, len(chunks) - end
 -                         )
 -                     )
 -                 labels.extend([0, 0])
 -                 layers.append((end, len(chunks)))
 -                 start = end
 -                 end = len(chunks)
 -                 continue
 - 
 -             n_neighbors = int((len(embeddings) - 1) ** 0.8)
 -             reduced_embeddings = umap.UMAP(
 -                 n_neighbors=max(2, n_neighbors),
 -                 n_components=min(12, len(embeddings) - 2),
 -                 metric="cosine",
 -             ).fit_transform(embeddings)
 -             n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state)
 -             if n_clusters == 1:
 -                 lbls = [0 for _ in range(len(reduced_embeddings))]
 -             else:
 -                 gm = GaussianMixture(n_components=n_clusters, random_state=random_state)
 -                 gm.fit(reduced_embeddings)
 -                 probs = gm.predict_proba(reduced_embeddings)
 -                 lbls = [np.where(prob > self._threshold)[0] for prob in probs]
 -                 lbls = [lbl[0] if isinstance(lbl, np.ndarray) else lbl for lbl in lbls]
 - 
 -             async with trio.open_nursery() as nursery:
 -                 for c in range(n_clusters):
 -                     ck_idx = [i + start for i in range(len(lbls)) if lbls[i] == c]
 -                     assert len(ck_idx) > 0
 -                     async with chat_limiter:
 -                         nursery.start_soon(summarize, ck_idx)
 - 
 -             assert len(chunks) - end == n_clusters, "{} vs. {}".format(
 -                 len(chunks) - end, n_clusters
 -             )
 -             labels.extend(lbls)
 -             layers.append((end, len(chunks)))
 -             if callback:
 -                 callback(
 -                     msg="Cluster one layer: {} -> {}".format(
 -                         end - start, len(chunks) - end
 -                     )
 -                 )
 -             start = end
 -             end = len(chunks)
 - 
 -         return chunks
 
 
  |