選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

assistant.py 13KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. from flask import request
  17. from api.db import StatusEnum
  18. from api.db.db_models import TenantLLM
  19. from api.db.services.dialog_service import DialogService
  20. from api.db.services.knowledgebase_service import KnowledgebaseService
  21. from api.db.services.llm_service import LLMService, TenantLLMService
  22. from api.db.services.user_service import TenantService
  23. from api.settings import RetCode
  24. from api.utils import get_uuid
  25. from api.utils.api_utils import get_data_error_result, token_required
  26. from api.utils.api_utils import get_json_result
  27. @manager.route('/save', methods=['POST'])
  28. @token_required
  29. def save(tenant_id):
  30. req = request.json
  31. # dataset
  32. if req.get("knowledgebases") == []:
  33. return get_data_error_result(retmsg="knowledgebases can not be empty list")
  34. kb_list = []
  35. if req.get("knowledgebases"):
  36. for kb in req.get("knowledgebases"):
  37. if not kb["id"]:
  38. return get_data_error_result(retmsg="knowledgebase needs id")
  39. if not KnowledgebaseService.query(id=kb["id"], tenant_id=tenant_id):
  40. return get_data_error_result(retmsg="you do not own the knowledgebase")
  41. # if not DocumentService.query(kb_id=kb["id"]):
  42. # return get_data_error_result(retmsg="There is a invalid knowledgebase")
  43. kb_list.append(kb["id"])
  44. req["kb_ids"] = kb_list
  45. # llm
  46. llm = req.get("llm")
  47. if llm:
  48. if "model_name" in llm:
  49. req["llm_id"] = llm.pop("model_name")
  50. req["llm_setting"] = req.pop("llm")
  51. e, tenant = TenantService.get_by_id(tenant_id)
  52. if not e:
  53. return get_data_error_result(retmsg="Tenant not found!")
  54. # prompt
  55. prompt = req.get("prompt")
  56. key_mapping = {"parameters": "variables",
  57. "prologue": "opener",
  58. "quote": "show_quote",
  59. "system": "prompt",
  60. "rerank_id": "rerank_model",
  61. "vector_similarity_weight": "keywords_similarity_weight"}
  62. key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
  63. if prompt:
  64. for new_key, old_key in key_mapping.items():
  65. if old_key in prompt:
  66. prompt[new_key] = prompt.pop(old_key)
  67. for key in key_list:
  68. if key in prompt:
  69. req[key] = prompt.pop(key)
  70. req["prompt_config"] = req.pop("prompt")
  71. # create
  72. if "id" not in req:
  73. # dataset
  74. if not kb_list:
  75. return get_data_error_result(retmsg="knowledgebases are required!")
  76. # init
  77. req["id"] = get_uuid()
  78. req["description"] = req.get("description", "A helpful Assistant")
  79. req["icon"] = req.get("avatar", "")
  80. req["top_n"] = req.get("top_n", 6)
  81. req["top_k"] = req.get("top_k", 1024)
  82. req["rerank_id"] = req.get("rerank_id", "")
  83. if req.get("llm_id"):
  84. if not TenantLLMService.query(llm_name=req["llm_id"]):
  85. return get_data_error_result(retmsg="the model_name does not exist.")
  86. else:
  87. req["llm_id"] = tenant.llm_id
  88. if not req.get("name"):
  89. return get_data_error_result(retmsg="name is required.")
  90. if DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value):
  91. return get_data_error_result(retmsg="Duplicated assistant name in creating dataset.")
  92. # tenant_id
  93. if req.get("tenant_id"):
  94. return get_data_error_result(retmsg="tenant_id must not be provided.")
  95. req["tenant_id"] = tenant_id
  96. # prompt more parameter
  97. default_prompt = {
  98. "system": """你是一个智能助手,请总结知识库的内容来回答问题,请列举知识库中的数据详细回答。当所有知识库内容都与问题无关时,你的回答必须包括“知识库中未找到您要的答案!”这句话。回答需要考虑聊天历史。
  99. 以下是知识库:
  100. {knowledge}
  101. 以上是知识库。""",
  102. "prologue": "您好,我是您的助手小樱,长得可爱又善良,can I help you?",
  103. "parameters": [
  104. {"key": "knowledge", "optional": False}
  105. ],
  106. "empty_response": "Sorry! 知识库中未找到相关内容!"
  107. }
  108. key_list_2 = ["system", "prologue", "parameters", "empty_response"]
  109. if "prompt_config" not in req:
  110. req['prompt_config'] = {}
  111. for key in key_list_2:
  112. temp = req['prompt_config'].get(key)
  113. if not temp:
  114. req['prompt_config'][key] = default_prompt[key]
  115. for p in req['prompt_config']["parameters"]:
  116. if p["optional"]:
  117. continue
  118. if req['prompt_config']["system"].find("{%s}" % p["key"]) < 0:
  119. return get_data_error_result(
  120. retmsg="Parameter '{}' is not used".format(p["key"]))
  121. # save
  122. if not DialogService.save(**req):
  123. return get_data_error_result(retmsg="Fail to new an assistant!")
  124. # response
  125. e, res = DialogService.get_by_id(req["id"])
  126. if not e:
  127. return get_data_error_result(retmsg="Fail to new an assistant!")
  128. res = res.to_json()
  129. renamed_dict = {}
  130. for key, value in res["prompt_config"].items():
  131. new_key = key_mapping.get(key, key)
  132. renamed_dict[new_key] = value
  133. res["prompt"] = renamed_dict
  134. del res["prompt_config"]
  135. new_dict = {"similarity_threshold": res["similarity_threshold"],
  136. "keywords_similarity_weight": res["vector_similarity_weight"],
  137. "top_n": res["top_n"],
  138. "rerank_model": res['rerank_id']}
  139. res["prompt"].update(new_dict)
  140. for key in key_list:
  141. del res[key]
  142. res["llm"] = res.pop("llm_setting")
  143. res["llm"]["model_name"] = res.pop("llm_id")
  144. del res["kb_ids"]
  145. res["knowledgebases"] = req["knowledgebases"]
  146. res["avatar"] = res.pop("icon")
  147. return get_json_result(data=res)
  148. else:
  149. # authorization
  150. if not DialogService.query(tenant_id=tenant_id, id=req["id"], status=StatusEnum.VALID.value):
  151. return get_json_result(data=False, retmsg='You do not own the assistant', retcode=RetCode.OPERATING_ERROR)
  152. # prompt
  153. if not req["id"]:
  154. return get_data_error_result(retmsg="id can not be empty")
  155. e, res = DialogService.get_by_id(req["id"])
  156. res = res.to_json()
  157. if "llm_id" in req:
  158. if not TenantLLMService.query(llm_name=req["llm_id"]):
  159. return get_data_error_result(retmsg="the model_name does not exist.")
  160. if "name" in req:
  161. if not req.get("name"):
  162. return get_data_error_result(retmsg="name is not empty.")
  163. if req["name"].lower() != res["name"].lower() \
  164. and len(
  165. DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)) > 0:
  166. return get_data_error_result(retmsg="Duplicated assistant name in updating dataset.")
  167. if "prompt_config" in req:
  168. res["prompt_config"].update(req["prompt_config"])
  169. for p in res["prompt_config"]["parameters"]:
  170. if p["optional"]:
  171. continue
  172. if res["prompt_config"]["system"].find("{%s}" % p["key"]) < 0:
  173. return get_data_error_result(retmsg="Parameter '{}' is not used".format(p["key"]))
  174. if "llm_setting" in req:
  175. res["llm_setting"].update(req["llm_setting"])
  176. req["prompt_config"] = res["prompt_config"]
  177. req["llm_setting"] = res["llm_setting"]
  178. # avatar
  179. if "avatar" in req:
  180. req["icon"] = req.pop("avatar")
  181. assistant_id = req.pop("id")
  182. if "knowledgebases" in req:
  183. req.pop("knowledgebases")
  184. if not DialogService.update_by_id(assistant_id, req):
  185. return get_data_error_result(retmsg="Assistant not found!")
  186. return get_json_result(data=True)
  187. @manager.route('/delete', methods=['DELETE'])
  188. @token_required
  189. def delete(tenant_id):
  190. req = request.args
  191. if "id" not in req:
  192. return get_data_error_result(retmsg="id is required")
  193. id = req['id']
  194. if not DialogService.query(tenant_id=tenant_id, id=id, status=StatusEnum.VALID.value):
  195. return get_json_result(data=False, retmsg='you do not own the assistant.', retcode=RetCode.OPERATING_ERROR)
  196. temp_dict = {"status": StatusEnum.INVALID.value}
  197. DialogService.update_by_id(req["id"], temp_dict)
  198. return get_json_result(data=True)
  199. @manager.route('/get', methods=['GET'])
  200. @token_required
  201. def get(tenant_id):
  202. req = request.args
  203. if "id" in req:
  204. id = req["id"]
  205. ass = DialogService.query(tenant_id=tenant_id, id=id, status=StatusEnum.VALID.value)
  206. if not ass:
  207. return get_json_result(data=False, retmsg='You do not own the assistant.', retcode=RetCode.OPERATING_ERROR)
  208. if "name" in req:
  209. name = req["name"]
  210. if ass[0].name != name:
  211. return get_json_result(data=False, retmsg='name does not match id.', retcode=RetCode.OPERATING_ERROR)
  212. res = ass[0].to_json()
  213. else:
  214. if "name" in req:
  215. name = req["name"]
  216. ass = DialogService.query(name=name, tenant_id=tenant_id, status=StatusEnum.VALID.value)
  217. if not ass:
  218. return get_json_result(data=False, retmsg='You do not own the assistant.',
  219. retcode=RetCode.OPERATING_ERROR)
  220. res = ass[0].to_json()
  221. else:
  222. return get_data_error_result(retmsg="At least one of `id` or `name` must be provided.")
  223. renamed_dict = {}
  224. key_mapping = {"parameters": "variables",
  225. "prologue": "opener",
  226. "quote": "show_quote",
  227. "system": "prompt",
  228. "rerank_id": "rerank_model",
  229. "vector_similarity_weight": "keywords_similarity_weight"}
  230. key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
  231. for key, value in res["prompt_config"].items():
  232. new_key = key_mapping.get(key, key)
  233. renamed_dict[new_key] = value
  234. res["prompt"] = renamed_dict
  235. del res["prompt_config"]
  236. new_dict = {"similarity_threshold": res["similarity_threshold"],
  237. "keywords_similarity_weight": res["vector_similarity_weight"],
  238. "top_n": res["top_n"],
  239. "rerank_model": res['rerank_id']}
  240. res["prompt"].update(new_dict)
  241. for key in key_list:
  242. del res[key]
  243. res["llm"] = res.pop("llm_setting")
  244. res["llm"]["model_name"] = res.pop("llm_id")
  245. kb_list = []
  246. for kb_id in res["kb_ids"]:
  247. kb = KnowledgebaseService.query(id=kb_id)
  248. kb_list.append(kb[0].to_json())
  249. del res["kb_ids"]
  250. res["knowledgebases"] = kb_list
  251. res["avatar"] = res.pop("icon")
  252. return get_json_result(data=res)
  253. @manager.route('/list', methods=['GET'])
  254. @token_required
  255. def list_assistants(tenant_id):
  256. assts = DialogService.query(
  257. tenant_id=tenant_id,
  258. status=StatusEnum.VALID.value,
  259. reverse=True,
  260. order_by=DialogService.model.create_time)
  261. assts = [d.to_dict() for d in assts]
  262. list_assts = []
  263. renamed_dict = {}
  264. key_mapping = {"parameters": "variables",
  265. "prologue": "opener",
  266. "quote": "show_quote",
  267. "system": "prompt",
  268. "rerank_id": "rerank_model",
  269. "vector_similarity_weight": "keywords_similarity_weight"}
  270. key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
  271. for res in assts:
  272. for key, value in res["prompt_config"].items():
  273. new_key = key_mapping.get(key, key)
  274. renamed_dict[new_key] = value
  275. res["prompt"] = renamed_dict
  276. del res["prompt_config"]
  277. new_dict = {"similarity_threshold": res["similarity_threshold"],
  278. "keywords_similarity_weight": res["vector_similarity_weight"],
  279. "top_n": res["top_n"],
  280. "rerank_model": res['rerank_id']}
  281. res["prompt"].update(new_dict)
  282. for key in key_list:
  283. del res[key]
  284. res["llm"] = res.pop("llm_setting")
  285. res["llm"]["model_name"] = res.pop("llm_id")
  286. kb_list = []
  287. for kb_id in res["kb_ids"]:
  288. kb = KnowledgebaseService.query(id=kb_id)
  289. kb_list.append(kb[0].to_json())
  290. del res["kb_ids"]
  291. res["knowledgebases"] = kb_list
  292. res["avatar"] = res.pop("icon")
  293. list_assts.append(res)
  294. return get_json_result(data=list_assts)