- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import logging
 - from abc import ABC
 - 
 - import pandas as pd
 - 
 - from api.db import LLMType
 - from api.db.services.knowledgebase_service import KnowledgebaseService
 - from api.db.services.llm_service import LLMBundle
 - from api import settings
 - from agent.component.base import ComponentBase, ComponentParamBase
 - from rag.app.tag import label_question
 - 
 - 
 - class RetrievalParam(ComponentParamBase):
 - 
 -     """
 -     Define the Retrieval component parameters.
 -     """
 -     def __init__(self):
 -         super().__init__()
 -         self.similarity_threshold = 0.2
 -         self.keywords_similarity_weight = 0.5
 -         self.top_n = 8
 -         self.top_k = 1024
 -         self.kb_ids = []
 -         self.rerank_id = ""
 -         self.empty_response = ""
 - 
 -     def check(self):
 -         self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold")
 -         self.check_decimal_float(self.keywords_similarity_weight, "[Retrieval] Keyword similarity weight")
 -         self.check_positive_number(self.top_n, "[Retrieval] Top N")
 - 
 - 
 - class Retrieval(ComponentBase, ABC):
 -     component_name = "Retrieval"
 - 
 -     def _run(self, history, **kwargs):
 -         query = self.get_input()
 -         query = str(query["content"][0]) if "content" in query else ""
 -         lines = query.split('\n')
 -         user_queries = [line.split("USER:", 1)[1] for line in lines if line.startswith("USER:")]
 -         query = user_queries[-1] if user_queries else ""
 -         kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
 -         if not kbs:
 -             return Retrieval.be_output("")
 - 
 -         embd_nms = list(set([kb.embd_id for kb in kbs]))
 -         assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
 - 
 -         embd_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, embd_nms[0])
 -         self._canvas.set_embedding_model(embd_nms[0])
 - 
 -         rerank_mdl = None
 -         if self._param.rerank_id:
 -             rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
 - 
 -         kbinfos = settings.retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
 -                                         1, self._param.top_n,
 -                                         self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
 -                                         aggs=False, rerank_mdl=rerank_mdl,
 -                                         rank_feature=label_question(query, kbs))
 - 
 -         if not kbinfos["chunks"]:
 -             df = Retrieval.be_output("")
 -             if self._param.empty_response and self._param.empty_response.strip():
 -                 df["empty_response"] = self._param.empty_response
 -             return df
 - 
 -         df = pd.DataFrame(kbinfos["chunks"])
 -         df["content"] = df["content_with_weight"]
 -         del df["content_with_weight"]
 -         logging.debug("{} {}".format(query, df))
 -         return df
 - 
 - 
 
 
  |