- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import logging
- import re
- import umap
- import numpy as np
- from sklearn.mixture import GaussianMixture
- import trio
-
- from graphrag.utils import (
- get_llm_cache,
- get_embed_cache,
- set_embed_cache,
- set_llm_cache,
- chat_limiter,
- )
- from rag.utils import truncate
-
-
- class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
- def __init__(
- self, max_cluster, llm_model, embd_model, prompt, max_token=512, threshold=0.1
- ):
- self._max_cluster = max_cluster
- self._llm_model = llm_model
- self._embd_model = embd_model
- self._threshold = threshold
- self._prompt = prompt
- self._max_token = max_token
-
- async def _chat(self, system, history, gen_conf):
- response = get_llm_cache(self._llm_model.llm_name, system, history, gen_conf)
- if response:
- return response
- response = await trio.to_thread.run_sync(
- lambda: self._llm_model.chat(system, history, gen_conf)
- )
- response = re.sub(r"<think>.*</think>", "", response, flags=re.DOTALL)
- if response.find("**ERROR**") >= 0:
- raise Exception(response)
- set_llm_cache(self._llm_model.llm_name, system, response, history, gen_conf)
- return response
-
- async def _embedding_encode(self, txt):
- response = get_embed_cache(self._embd_model.llm_name, txt)
- if response is not None:
- return response
- embds, _ = await trio.to_thread.run_sync(lambda: self._embd_model.encode([txt]))
- if len(embds) < 1 or len(embds[0]) < 1:
- raise Exception("Embedding error: ")
- embds = embds[0]
- set_embed_cache(self._embd_model.llm_name, txt, embds)
- return embds
-
- def _get_optimal_clusters(self, embeddings: np.ndarray, random_state: int):
- max_clusters = min(self._max_cluster, len(embeddings))
- n_clusters = np.arange(1, max_clusters)
- bics = []
- for n in n_clusters:
- gm = GaussianMixture(n_components=n, random_state=random_state)
- gm.fit(embeddings)
- bics.append(gm.bic(embeddings))
- optimal_clusters = n_clusters[np.argmin(bics)]
- return optimal_clusters
-
- async def __call__(self, chunks, random_state, callback=None):
- layers = [(0, len(chunks))]
- start, end = 0, len(chunks)
- if len(chunks) <= 1:
- return []
- chunks = [(s, a) for s, a in chunks if s and len(a) > 0]
-
- async def summarize(ck_idx: list[int]):
- nonlocal chunks
- texts = [chunks[i][0] for i in ck_idx]
- len_per_chunk = int(
- (self._llm_model.max_length - self._max_token) / len(texts)
- )
- cluster_content = "\n".join(
- [truncate(t, max(1, len_per_chunk)) for t in texts]
- )
- async with chat_limiter:
- cnt = await self._chat(
- "You're a helpful assistant.",
- [
- {
- "role": "user",
- "content": self._prompt.format(
- cluster_content=cluster_content
- ),
- }
- ],
- {"temperature": 0.3, "max_tokens": self._max_token},
- )
- cnt = re.sub(
- "(······\n由于长度的原因,回答被截断了,要继续吗?|For the content length reason, it stopped, continue?)",
- "",
- cnt,
- )
- logging.debug(f"SUM: {cnt}")
- embds = await self._embedding_encode(cnt)
- chunks.append((cnt, embds))
-
- labels = []
- while end - start > 1:
- embeddings = [embd for _, embd in chunks[start:end]]
- if len(embeddings) == 2:
- await summarize([start, start + 1])
- if callback:
- callback(
- msg="Cluster one layer: {} -> {}".format(
- end - start, len(chunks) - end
- )
- )
- labels.extend([0, 0])
- layers.append((end, len(chunks)))
- start = end
- end = len(chunks)
- continue
-
- n_neighbors = int((len(embeddings) - 1) ** 0.8)
- reduced_embeddings = umap.UMAP(
- n_neighbors=max(2, n_neighbors),
- n_components=min(12, len(embeddings) - 2),
- metric="cosine",
- ).fit_transform(embeddings)
- n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state)
- if n_clusters == 1:
- lbls = [0 for _ in range(len(reduced_embeddings))]
- else:
- gm = GaussianMixture(n_components=n_clusters, random_state=random_state)
- gm.fit(reduced_embeddings)
- probs = gm.predict_proba(reduced_embeddings)
- lbls = [np.where(prob > self._threshold)[0] for prob in probs]
- lbls = [lbl[0] if isinstance(lbl, np.ndarray) else lbl for lbl in lbls]
-
- async with trio.open_nursery() as nursery:
- for c in range(n_clusters):
- ck_idx = [i + start for i in range(len(lbls)) if lbls[i] == c]
- assert len(ck_idx) > 0
- async with chat_limiter:
- nursery.start_soon(lambda: summarize(ck_idx))
-
- assert len(chunks) - end == n_clusters, "{} vs. {}".format(
- len(chunks) - end, n_clusters
- )
- labels.extend(lbls)
- layers.append((end, len(chunks)))
- if callback:
- callback(
- msg="Cluster one layer: {} -> {}".format(
- end - start, len(chunks) - end
- )
- )
- start = end
- end = len(chunks)
-
- return chunks
|