| 
                        123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 | 
                        - #
 - #  Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - 
 - import logging
 - import base64
 - import datetime
 - import json
 - import re
 - import pandas as pd
 - import requests
 - from api.db.services.knowledgebase_service import KnowledgebaseService
 - from rag.nlp import rag_tokenizer
 - from deepdoc.parser.resume import refactor
 - from deepdoc.parser.resume import step_one, step_two
 - from rag.utils import rmSpace
 - 
 - forbidden_select_fields4resume = [
 -     "name_pinyin_kwd", "edu_first_fea_kwd", "degree_kwd", "sch_rank_kwd", "edu_fea_kwd"
 - ]
 - 
 - 
 - def remote_call(filename, binary):
 -     q = {
 -         "header": {
 -             "uid": 1,
 -             "user": "kevinhu",
 -             "log_id": filename
 -         },
 -         "request": {
 -             "p": {
 -                 "request_id": "1",
 -                 "encrypt_type": "base64",
 -                 "filename": filename,
 -                 "langtype": '',
 -                 "fileori": base64.b64encode(binary).decode('utf-8')
 -             },
 -             "c": "resume_parse_module",
 -             "m": "resume_parse"
 -         }
 -     }
 -     for _ in range(3):
 -         try:
 -             resume = requests.post(
 -                 "http://127.0.0.1:61670/tog",
 -                 data=json.dumps(q))
 -             resume = resume.json()["response"]["results"]
 -             resume = refactor(resume)
 -             for k in ["education", "work", "project",
 -                       "training", "skill", "certificate", "language"]:
 -                 if not resume.get(k) and k in resume:
 -                     del resume[k]
 - 
 -             resume = step_one.refactor(pd.DataFrame([{"resume_content": json.dumps(resume), "tob_resume_id": "x",
 -                                                       "updated_at": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]))
 -             resume = step_two.parse(resume)
 -             return resume
 -         except Exception:
 -             logging.exception("Resume parser has not been supported yet!")
 -     return {}
 - 
 - 
 - def chunk(filename, binary=None, callback=None, **kwargs):
 -     """
 -     The supported file formats are pdf, docx and txt.
 -     To maximize the effectiveness, parse the resume correctly, please concat us: https://github.com/infiniflow/ragflow
 -     """
 -     if not re.search(r"\.(pdf|doc|docx|txt)$", filename, flags=re.IGNORECASE):
 -         raise NotImplementedError("file type not supported yet(pdf supported)")
 - 
 -     if not binary:
 -         with open(filename, "rb") as f:
 -             binary = f.read()
 - 
 -     callback(0.2, "Resume parsing is going on...")
 -     resume = remote_call(filename, binary)
 -     if len(resume.keys()) < 7:
 -         callback(-1, "Resume is not successfully parsed.")
 -         raise Exception("Resume parser remote call fail!")
 -     callback(0.6, "Done parsing. Chunking...")
 -     logging.debug("chunking resume: " + json.dumps(resume, ensure_ascii=False, indent=2))
 - 
 -     field_map = {
 -         "name_kwd": "姓名/名字",
 -         "name_pinyin_kwd": "姓名拼音/名字拼音",
 -         "gender_kwd": "性别(男,女)",
 -         "age_int": "年龄/岁/年纪",
 -         "phone_kwd": "电话/手机/微信",
 -         "email_tks": "email/e-mail/邮箱",
 -         "position_name_tks": "职位/职能/岗位/职责",
 -         "expect_city_names_tks": "期望城市",
 -         "work_exp_flt": "工作年限/工作年份/N年经验/毕业了多少年",
 -         "corporation_name_tks": "最近就职(上班)的公司/上一家公司",
 - 
 -         "first_school_name_tks": "第一学历毕业学校",
 -         "first_degree_kwd": "第一学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
 -         "highest_degree_kwd": "最高学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
 -         "first_major_tks": "第一学历专业",
 -         "edu_first_fea_kwd": "第一学历标签(211,留学,双一流,985,海外知名,重点大学,中专,专升本,专科,本科,大专)",
 - 
 -         "degree_kwd": "过往学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
 -         "major_tks": "学过的专业/过往专业",
 -         "school_name_tks": "学校/毕业院校",
 -         "sch_rank_kwd": "学校标签(顶尖学校,精英学校,优质学校,一般学校)",
 -         "edu_fea_kwd": "教育标签(211,留学,双一流,985,海外知名,重点大学,中专,专升本,专科,本科,大专)",
 - 
 -         "corp_nm_tks": "就职过的公司/之前的公司/上过班的公司",
 -         "edu_end_int": "毕业年份",
 -         "industry_name_tks": "所在行业",
 - 
 -         "birth_dt": "生日/出生年份",
 -         "expect_position_name_tks": "期望职位/期望职能/期望岗位",
 -     }
 - 
 -     titles = []
 -     for n in ["name_kwd", "gender_kwd", "position_name_tks", "age_int"]:
 -         v = resume.get(n, "")
 -         if isinstance(v, list):
 -             v = v[0]
 -         if n.find("tks") > 0:
 -             v = rmSpace(v)
 -         titles.append(str(v))
 -     doc = {
 -         "docnm_kwd": filename,
 -         "title_tks": rag_tokenizer.tokenize("-".join(titles) + "-简历")
 -     }
 -     doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
 -     pairs = []
 -     for n, m in field_map.items():
 -         if not resume.get(n):
 -             continue
 -         v = resume[n]
 -         if isinstance(v, list):
 -             v = " ".join(v)
 -         if n.find("tks") > 0:
 -             v = rmSpace(v)
 -         pairs.append((m, str(v)))
 - 
 -     doc["content_with_weight"] = "\n".join(
 -         ["{}: {}".format(re.sub(r"([^()]+)", "", k), v) for k, v in pairs])
 -     doc["content_ltks"] = rag_tokenizer.tokenize(doc["content_with_weight"])
 -     doc["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(doc["content_ltks"])
 -     for n, _ in field_map.items():
 -         if n not in resume:
 -             continue
 -         if isinstance(resume[n], list) and (
 -                 len(resume[n]) == 1 or n not in forbidden_select_fields4resume):
 -             resume[n] = resume[n][0]
 -         if n.find("_tks") > 0:
 -             resume[n] = rag_tokenizer.fine_grained_tokenize(resume[n])
 -         doc[n] = resume[n]
 - 
 -     logging.debug("chunked resume to " + str(doc))
 -     KnowledgebaseService.update_parser_config(
 -         kwargs["kb_id"], {"field_map": field_map})
 -     return [doc]
 - 
 - 
 - if __name__ == "__main__":
 -     import sys
 - 
 -     def dummy(a, b):
 -         pass
 -     chunk(sys.argv[1], callback=dummy)
 
 
  |