- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - from flask import request
 - 
 - from api.db import StatusEnum
 - from api.db.db_models import TenantLLM
 - from api.db.services.dialog_service import DialogService
 - from api.db.services.knowledgebase_service import KnowledgebaseService
 - from api.db.services.llm_service import LLMService, TenantLLMService
 - from api.db.services.user_service import TenantService
 - from api.settings import RetCode
 - from api.utils import get_uuid
 - from api.utils.api_utils import get_data_error_result, token_required
 - from api.utils.api_utils import get_json_result
 - 
 - 
 - @manager.route('/save', methods=['POST'])
 - @token_required
 - def save(tenant_id):
 -     req = request.json
 -     # dataset
 -     if req.get("knowledgebases") == []:
 -         return get_data_error_result(retmsg="knowledgebases can not be empty list")
 -     kb_list = []
 -     if req.get("knowledgebases"):
 -         for kb in req.get("knowledgebases"):
 -             if not kb["id"]:
 -                 return get_data_error_result(retmsg="knowledgebase needs id")
 -             if not KnowledgebaseService.query(id=kb["id"], tenant_id=tenant_id):
 -                 return get_data_error_result(retmsg="you do not own the knowledgebase")
 -             # if not DocumentService.query(kb_id=kb["id"]):
 -             #  return get_data_error_result(retmsg="There is a invalid knowledgebase")
 -             kb_list.append(kb["id"])
 -     req["kb_ids"] = kb_list
 -     # llm
 -     llm = req.get("llm")
 -     if llm:
 -         if "model_name" in llm:
 -             req["llm_id"] = llm.pop("model_name")
 -         req["llm_setting"] = req.pop("llm")
 -     e, tenant = TenantService.get_by_id(tenant_id)
 -     if not e:
 -         return get_data_error_result(retmsg="Tenant not found!")
 -     # prompt
 -     prompt = req.get("prompt")
 -     key_mapping = {"parameters": "variables",
 -                    "prologue": "opener",
 -                    "quote": "show_quote",
 -                    "system": "prompt",
 -                    "rerank_id": "rerank_model",
 -                    "vector_similarity_weight": "keywords_similarity_weight"}
 -     key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
 -     if prompt:
 -         for new_key, old_key in key_mapping.items():
 -             if old_key in prompt:
 -                 prompt[new_key] = prompt.pop(old_key)
 -         for key in key_list:
 -             if key in prompt:
 -                 req[key] = prompt.pop(key)
 -         req["prompt_config"] = req.pop("prompt")
 -     # create
 -     if "id" not in req:
 -         # dataset
 -         if not kb_list:
 -             return get_data_error_result(retmsg="knowledgebases are required!")
 -         # init
 -         req["id"] = get_uuid()
 -         req["description"] = req.get("description", "A helpful Assistant")
 -         req["icon"] = req.get("avatar", "")
 -         req["top_n"] = req.get("top_n", 6)
 -         req["top_k"] = req.get("top_k", 1024)
 -         req["rerank_id"] = req.get("rerank_id", "")
 -         if req.get("llm_id"):
 -             if not TenantLLMService.query(llm_name=req["llm_id"]):
 -                 return get_data_error_result(retmsg="the model_name does not exist.")
 -         else:
 -             req["llm_id"] = tenant.llm_id
 -         if not req.get("name"):
 -             return get_data_error_result(retmsg="name is required.")
 -         if DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value):
 -             return get_data_error_result(retmsg="Duplicated assistant name in creating dataset.")
 -         # tenant_id
 -         if req.get("tenant_id"):
 -             return get_data_error_result(retmsg="tenant_id must not be provided.")
 -         req["tenant_id"] = tenant_id
 -         # prompt more parameter
 -         default_prompt = {
 -             "system": """你是一个智能助手,请总结知识库的内容来回答问题,请列举知识库中的数据详细回答。当所有知识库内容都与问题无关时,你的回答必须包括“知识库中未找到您要的答案!”这句话。回答需要考虑聊天历史。
 -                 以下是知识库:
 -                 {knowledge}
 -                 以上是知识库。""",
 -             "prologue": "您好,我是您的助手小樱,长得可爱又善良,can I help you?",
 -             "parameters": [
 -                 {"key": "knowledge", "optional": False}
 -             ],
 -             "empty_response": "Sorry! 知识库中未找到相关内容!"
 -         }
 -         key_list_2 = ["system", "prologue", "parameters", "empty_response"]
 -         if "prompt_config" not in req:
 -             req['prompt_config'] = {}
 -         for key in key_list_2:
 -             temp = req['prompt_config'].get(key)
 -             if not temp:
 -                 req['prompt_config'][key] = default_prompt[key]
 -         for p in req['prompt_config']["parameters"]:
 -             if p["optional"]:
 -                 continue
 -             if req['prompt_config']["system"].find("{%s}" % p["key"]) < 0:
 -                 return get_data_error_result(
 -                     retmsg="Parameter '{}' is not used".format(p["key"]))
 -         # save
 -         if not DialogService.save(**req):
 -             return get_data_error_result(retmsg="Fail to new an assistant!")
 -         # response
 -         e, res = DialogService.get_by_id(req["id"])
 -         if not e:
 -             return get_data_error_result(retmsg="Fail to new an assistant!")
 -         res = res.to_json()
 -         renamed_dict = {}
 -         for key, value in res["prompt_config"].items():
 -             new_key = key_mapping.get(key, key)
 -             renamed_dict[new_key] = value
 -         res["prompt"] = renamed_dict
 -         del res["prompt_config"]
 -         new_dict = {"similarity_threshold": res["similarity_threshold"],
 -                     "keywords_similarity_weight": res["vector_similarity_weight"],
 -                     "top_n": res["top_n"],
 -                     "rerank_model": res['rerank_id']}
 -         res["prompt"].update(new_dict)
 -         for key in key_list:
 -             del res[key]
 -         res["llm"] = res.pop("llm_setting")
 -         res["llm"]["model_name"] = res.pop("llm_id")
 -         del res["kb_ids"]
 -         res["knowledgebases"] = req["knowledgebases"]
 -         res["avatar"] = res.pop("icon")
 -         return get_json_result(data=res)
 -     else:
 -         # authorization
 -         if not DialogService.query(tenant_id=tenant_id, id=req["id"], status=StatusEnum.VALID.value):
 -             return get_json_result(data=False, retmsg='You do not own the assistant', retcode=RetCode.OPERATING_ERROR)
 -         # prompt
 -         if not req["id"]:
 -             return get_data_error_result(retmsg="id can not be empty")
 -         e, res = DialogService.get_by_id(req["id"])
 -         res = res.to_json()
 -         if "llm_id" in req:
 -             if not TenantLLMService.query(llm_name=req["llm_id"]):
 -                 return get_data_error_result(retmsg="the model_name does not exist.")
 -         if "name" in req:
 -             if not req.get("name"):
 -                 return get_data_error_result(retmsg="name is not empty.")
 -             if req["name"].lower() != res["name"].lower() \
 -                     and len(
 -                 DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)) > 0:
 -                 return get_data_error_result(retmsg="Duplicated assistant name in updating dataset.")
 -         if "prompt_config" in req:
 -             res["prompt_config"].update(req["prompt_config"])
 -             for p in res["prompt_config"]["parameters"]:
 -                 if p["optional"]:
 -                     continue
 -                 if res["prompt_config"]["system"].find("{%s}" % p["key"]) < 0:
 -                     return get_data_error_result(retmsg="Parameter '{}' is not used".format(p["key"]))
 -         if "llm_setting" in req:
 -             res["llm_setting"].update(req["llm_setting"])
 -         req["prompt_config"] = res["prompt_config"]
 -         req["llm_setting"] = res["llm_setting"]
 -         # avatar
 -         if "avatar" in req:
 -             req["icon"] = req.pop("avatar")
 -         assistant_id = req.pop("id")
 -         if "knowledgebases" in req:
 -             req.pop("knowledgebases")
 -         if not DialogService.update_by_id(assistant_id, req):
 -             return get_data_error_result(retmsg="Assistant not found!")
 -         return get_json_result(data=True)
 - 
 - 
 - @manager.route('/delete', methods=['DELETE'])
 - @token_required
 - def delete(tenant_id):
 -     req = request.args
 -     if "id" not in req:
 -         return get_data_error_result(retmsg="id is required")
 -     id = req['id']
 -     if not DialogService.query(tenant_id=tenant_id, id=id, status=StatusEnum.VALID.value):
 -         return get_json_result(data=False, retmsg='you do not own the assistant.', retcode=RetCode.OPERATING_ERROR)
 - 
 -     temp_dict = {"status": StatusEnum.INVALID.value}
 -     DialogService.update_by_id(req["id"], temp_dict)
 -     return get_json_result(data=True)
 - 
 - 
 - @manager.route('/get', methods=['GET'])
 - @token_required
 - def get(tenant_id):
 -     req = request.args
 -     if "id" in req:
 -         id = req["id"]
 -         ass = DialogService.query(tenant_id=tenant_id, id=id, status=StatusEnum.VALID.value)
 -         if not ass:
 -             return get_json_result(data=False, retmsg='You do not own the assistant.', retcode=RetCode.OPERATING_ERROR)
 -         if "name" in req:
 -             name = req["name"]
 -             if ass[0].name != name:
 -                 return get_json_result(data=False, retmsg='name does not match id.', retcode=RetCode.OPERATING_ERROR)
 -         res = ass[0].to_json()
 -     else:
 -         if "name" in req:
 -             name = req["name"]
 -             ass = DialogService.query(name=name, tenant_id=tenant_id, status=StatusEnum.VALID.value)
 -             if not ass:
 -                 return get_json_result(data=False, retmsg='You do not own the assistant.',
 -                                        retcode=RetCode.OPERATING_ERROR)
 -             res = ass[0].to_json()
 -         else:
 -             return get_data_error_result(retmsg="At least one of `id` or `name` must be provided.")
 -     renamed_dict = {}
 -     key_mapping = {"parameters": "variables",
 -                    "prologue": "opener",
 -                    "quote": "show_quote",
 -                    "system": "prompt",
 -                    "rerank_id": "rerank_model",
 -                    "vector_similarity_weight": "keywords_similarity_weight"}
 -     key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
 -     for key, value in res["prompt_config"].items():
 -         new_key = key_mapping.get(key, key)
 -         renamed_dict[new_key] = value
 -     res["prompt"] = renamed_dict
 -     del res["prompt_config"]
 -     new_dict = {"similarity_threshold": res["similarity_threshold"],
 -                 "keywords_similarity_weight": res["vector_similarity_weight"],
 -                 "top_n": res["top_n"],
 -                 "rerank_model": res['rerank_id']}
 -     res["prompt"].update(new_dict)
 -     for key in key_list:
 -         del res[key]
 -     res["llm"] = res.pop("llm_setting")
 -     res["llm"]["model_name"] = res.pop("llm_id")
 -     kb_list = []
 -     for kb_id in res["kb_ids"]:
 -         kb = KnowledgebaseService.query(id=kb_id)
 -         kb_list.append(kb[0].to_json())
 -     del res["kb_ids"]
 -     res["knowledgebases"] = kb_list
 -     res["avatar"] = res.pop("icon")
 -     return get_json_result(data=res)
 - 
 - 
 - @manager.route('/list', methods=['GET'])
 - @token_required
 - def list_assistants(tenant_id):
 -     assts = DialogService.query(
 -         tenant_id=tenant_id,
 -         status=StatusEnum.VALID.value,
 -         reverse=True,
 -         order_by=DialogService.model.create_time)
 -     assts = [d.to_dict() for d in assts]
 -     list_assts = []
 -     renamed_dict = {}
 -     key_mapping = {"parameters": "variables",
 -                    "prologue": "opener",
 -                    "quote": "show_quote",
 -                    "system": "prompt",
 -                    "rerank_id": "rerank_model",
 -                    "vector_similarity_weight": "keywords_similarity_weight"}
 -     key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
 -     for res in assts:
 -         for key, value in res["prompt_config"].items():
 -             new_key = key_mapping.get(key, key)
 -             renamed_dict[new_key] = value
 -         res["prompt"] = renamed_dict
 -         del res["prompt_config"]
 -         new_dict = {"similarity_threshold": res["similarity_threshold"],
 -                     "keywords_similarity_weight": res["vector_similarity_weight"],
 -                     "top_n": res["top_n"],
 -                     "rerank_model": res['rerank_id']}
 -         res["prompt"].update(new_dict)
 -         for key in key_list:
 -             del res[key]
 -         res["llm"] = res.pop("llm_setting")
 -         res["llm"]["model_name"] = res.pop("llm_id")
 -         kb_list = []
 -         for kb_id in res["kb_ids"]:
 -             kb = KnowledgebaseService.query(id=kb_id)
 -             kb_list.append(kb[0].to_json())
 -         del res["kb_ids"]
 -         res["knowledgebases"] = kb_list
 -         res["avatar"] = res.pop("icon")
 -         list_assts.append(res)
 -     return get_json_result(data=list_assts)
 
 
  |