| 
                        123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282 | 
                        - #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import re
 - 
 - from api.db import LLMType
 - from api.db.db_models import Dialog, Conversation
 - from api.db.services.common_service import CommonService
 - from api.db.services.knowledgebase_service import KnowledgebaseService
 - from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle
 - from api.settings import chat_logger, retrievaler
 - from rag.app.resume import forbidden_select_fields4resume
 - from rag.nlp.search import index_name
 - from rag.utils import rmSpace, num_tokens_from_string, encoder
 - 
 - 
 - class DialogService(CommonService):
 -     model = Dialog
 - 
 - 
 - class ConversationService(CommonService):
 -     model = Conversation
 - 
 - 
 - def message_fit_in(msg, max_length=4000):
 -     def count():
 -         nonlocal msg
 -         tks_cnts = []
 -         for m in msg:
 -             tks_cnts.append(
 -                 {"role": m["role"], "count": num_tokens_from_string(m["content"])})
 -         total = 0
 -         for m in tks_cnts:
 -             total += m["count"]
 -         return total
 - 
 -     c = count()
 -     if c < max_length:
 -         return c, msg
 - 
 -     msg_ = [m for m in msg[:-1] if m["role"] == "system"]
 -     msg_.append(msg[-1])
 -     msg = msg_
 -     c = count()
 -     if c < max_length:
 -         return c, msg
 - 
 -     ll = num_tokens_from_string(msg_[0].content)
 -     l = num_tokens_from_string(msg_[-1].content)
 -     if ll / (ll + l) > 0.8:
 -         m = msg_[0].content
 -         m = encoder.decode(encoder.encode(m)[:max_length - l])
 -         msg[0].content = m
 -         return max_length, msg
 - 
 -     m = msg_[1].content
 -     m = encoder.decode(encoder.encode(m)[:max_length - l])
 -     msg[1].content = m
 -     return max_length, msg
 - 
 - 
 - def chat(dialog, messages, **kwargs):
 -     assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
 -     llm = LLMService.query(llm_name=dialog.llm_id)
 -     if not llm:
 -         llm = TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=dialog.llm_id)
 -         if not llm:
 -             raise LookupError("LLM(%s) not found" % dialog.llm_id)
 -         max_tokens = 1024
 -     else: max_tokens = llm[0].max_tokens
 -     kbs = KnowledgebaseService.get_by_ids(dialog.kb_ids)
 -     embd_nms = list(set([kb.embd_id for kb in kbs]))
 -     assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
 - 
 -     questions = [m["content"] for m in messages if m["role"] == "user"]
 -     embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embd_nms[0])
 -     chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
 - 
 -     prompt_config = dialog.prompt_config
 -     field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
 -     # try to use sql if field mapping is good to go
 -     if field_map:
 -         chat_logger.info("Use SQL to retrieval:{}".format(questions[-1]))
 -         ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True))
 -         if ans: return ans
 - 
 -     for p in prompt_config["parameters"]:
 -         if p["key"] == "knowledge":
 -             continue
 -         if p["key"] not in kwargs and not p["optional"]:
 -             raise KeyError("Miss parameter: " + p["key"])
 -         if p["key"] not in kwargs:
 -             prompt_config["system"] = prompt_config["system"].replace(
 -                 "{%s}" % p["key"], " ")
 - 
 -     for _ in range(len(questions) // 2):
 -         questions.append(questions[-1])
 -     if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
 -         kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
 -     else:
 -         kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
 -                                         dialog.similarity_threshold,
 -                                         dialog.vector_similarity_weight, top=1024, aggs=False)
 -     knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
 -     chat_logger.info(
 -         "{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
 - 
 -     if not knowledges and prompt_config.get("empty_response"):
 -         return {
 -             "answer": prompt_config["empty_response"], "reference": kbinfos}
 - 
 -     kwargs["knowledge"] = "\n".join(knowledges)
 -     gen_conf = dialog.llm_setting
 -     msg = [{"role": m["role"], "content": m["content"]}
 -            for m in messages if m["role"] != "system"]
 -     used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.97))
 -     if "max_tokens" in gen_conf:
 -         gen_conf["max_tokens"] = min(
 -             gen_conf["max_tokens"],
 -             max_tokens - used_token_count)
 -     answer = chat_mdl.chat(
 -         prompt_config["system"].format(
 -             **kwargs), msg, gen_conf)
 -     chat_logger.info("User: {}|Assistant: {}".format(
 -         msg[-1]["content"], answer))
 - 
 -     if knowledges and prompt_config.get("quote", True):
 -         answer, idx = retrievaler.insert_citations(answer,
 -                                                    [ck["content_ltks"]
 -                                                        for ck in kbinfos["chunks"]],
 -                                                    [ck["vector"]
 -                                                        for ck in kbinfos["chunks"]],
 -                                                    embd_mdl,
 -                                                    tkweight=1 - dialog.vector_similarity_weight,
 -                                                    vtweight=dialog.vector_similarity_weight)
 -         idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
 -         recall_docs = [
 -             d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
 -         if not recall_docs: recall_docs = kbinfos["doc_aggs"]
 -         kbinfos["doc_aggs"] = recall_docs
 - 
 -     for c in kbinfos["chunks"]:
 -         if c.get("vector"):
 -             del c["vector"]
 -     if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api")>=0:
 -         answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
 -     return {"answer": answer, "reference": kbinfos}
 - 
 - 
 - def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
 -     sys_prompt = "你是一个DBA。你需要这对以下表的字段结构,根据用户的问题列表,写出最后一个问题对应的SQL。"
 -     user_promt = """
 - 表名:{};
 - 数据库表字段说明如下:
 - {}
 - 
 - 问题如下:
 - {}
 - 请写出SQL, 且只要SQL,不要有其他说明及文字。
 - """.format(
 -         index_name(tenant_id),
 -         "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
 -         question
 -     )
 -     tried_times = 0
 - 
 -     def get_table():
 -         nonlocal sys_prompt, user_promt, question, tried_times
 -         sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {
 -                             "temperature": 0.06})
 -         print(user_promt, sql)
 -         chat_logger.info(f"“{question}”==>{user_promt} get SQL: {sql}")
 -         sql = re.sub(r"[\r\n]+", " ", sql.lower())
 -         sql = re.sub(r".*select ", "select ", sql.lower())
 -         sql = re.sub(r" +", " ", sql)
 -         sql = re.sub(r"([;;]|```).*", "", sql)
 -         if sql[:len("select ")] != "select ":
 -             return None, None
 -         if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()):
 -             if sql[:len("select *")] != "select *":
 -                 sql = "select doc_id,docnm_kwd," + sql[6:]
 -             else:
 -                 flds = []
 -                 for k in field_map.keys():
 -                     if k in forbidden_select_fields4resume:
 -                         continue
 -                     if len(flds) > 11:
 -                         break
 -                     flds.append(k)
 -                 sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
 - 
 -         print(f"“{question}” get SQL(refined): {sql}")
 - 
 -         chat_logger.info(f"“{question}” get SQL(refined): {sql}")
 -         tried_times += 1
 -         return retrievaler.sql_retrieval(sql, format="json"), sql
 - 
 -     tbl, sql = get_table()
 -     if tbl is None:
 -         return None
 -     if tbl.get("error") and tried_times <= 2:
 -         user_promt = """
 -         表名:{};
 -         数据库表字段说明如下:
 -         {}
 - 
 -         问题如下:
 -         {}
 - 
 -         你上一次给出的错误SQL如下:
 -         {}
 - 
 -         后台报错如下:
 -         {}
 - 
 -         请纠正SQL中的错误再写一遍,且只要SQL,不要有其他说明及文字。
 -         """.format(
 -             index_name(tenant_id),
 -             "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
 -             question, sql, tbl["error"]
 -         )
 -         tbl, sql = get_table()
 -         chat_logger.info("TRY it again: {}".format(sql))
 - 
 -     chat_logger.info("GET table: {}".format(tbl))
 -     print(tbl)
 -     if tbl.get("error") or len(tbl["rows"]) == 0:
 -         return None
 - 
 -     docid_idx = set([ii for ii, c in enumerate(
 -         tbl["columns"]) if c["name"] == "doc_id"])
 -     docnm_idx = set([ii for ii, c in enumerate(
 -         tbl["columns"]) if c["name"] == "docnm_kwd"])
 -     clmn_idx = [ii for ii in range(
 -         len(tbl["columns"])) if ii not in (docid_idx | docnm_idx)]
 - 
 -     # compose markdown table
 -     clmns = "|" + "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"],
 -                            tbl["columns"][i]["name"])) for i in clmn_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
 - 
 -     line = "|" + "|".join(["------" for _ in range(len(clmn_idx))]) + \
 -         ("|------|" if docid_idx and docid_idx else "")
 - 
 -     rows = ["|" +
 -             "|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") +
 -             "|" for r in tbl["rows"]]
 -     if quota:
 -         rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
 -     else: rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
 -     rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows)
 - 
 -     if not docid_idx or not docnm_idx:
 -         chat_logger.warning("SQL missing field: " + sql)
 -         return {
 -             "answer": "\n".join([clmns, line, rows]),
 -             "reference": {"chunks": [], "doc_aggs": []}
 -         }
 - 
 -     docid_idx = list(docid_idx)[0]
 -     docnm_idx = list(docnm_idx)[0]
 -     doc_aggs = {}
 -     for r in tbl["rows"]:
 -         if r[docid_idx] not in doc_aggs:
 -             doc_aggs[r[docid_idx]] = {"doc_name": r[docnm_idx], "count": 0}
 -         doc_aggs[r[docid_idx]]["count"] += 1
 -     return {
 -         "answer": "\n".join([clmns, line, rows]),
 -         "reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]],
 -                       "doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in doc_aggs.items()]}
 -     }
 
 
  |