|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import logging
- import itertools
- import re
- import traceback
- from dataclasses import dataclass
- from typing import Any
-
- import networkx as nx
-
- from graphrag.extractor import Extractor
- from rag.nlp import is_english
- import editdistance
- from graphrag.entity_resolution_prompt import ENTITY_RESOLUTION_PROMPT
- from rag.llm.chat_model import Base as CompletionLLM
- from graphrag.utils import ErrorHandlerFn, perform_variable_replacements
-
- DEFAULT_RECORD_DELIMITER = "##"
- DEFAULT_ENTITY_INDEX_DELIMITER = "<|>"
- DEFAULT_RESOLUTION_RESULT_DELIMITER = "&&"
-
-
- @dataclass
- class EntityResolutionResult:
- """Entity resolution result class definition."""
-
- output: nx.Graph
-
-
- class EntityResolution(Extractor):
- """Entity resolution class definition."""
-
- _resolution_prompt: str
- _output_formatter_prompt: str
- _on_error: ErrorHandlerFn
- _record_delimiter_key: str
- _entity_index_delimiter_key: str
- _resolution_result_delimiter_key: str
-
- def __init__(
- self,
- llm_invoker: CompletionLLM,
- resolution_prompt: str | None = None,
- on_error: ErrorHandlerFn | None = None,
- record_delimiter_key: str | None = None,
- entity_index_delimiter_key: str | None = None,
- resolution_result_delimiter_key: str | None = None,
- input_text_key: str | None = None
- ):
- """Init method definition."""
- self._llm = llm_invoker
- self._resolution_prompt = resolution_prompt or ENTITY_RESOLUTION_PROMPT
- self._on_error = on_error or (lambda _e, _s, _d: None)
- self._record_delimiter_key = record_delimiter_key or "record_delimiter"
- self._entity_index_dilimiter_key = entity_index_delimiter_key or "entity_index_delimiter"
- self._resolution_result_delimiter_key = resolution_result_delimiter_key or "resolution_result_delimiter"
- self._input_text_key = input_text_key or "input_text"
-
- def __call__(self, graph: nx.Graph, prompt_variables: dict[str, Any] | None = None) -> EntityResolutionResult:
- """Call method definition."""
- if prompt_variables is None:
- prompt_variables = {}
-
- # Wire defaults into the prompt variables
- prompt_variables = {
- **prompt_variables,
- self._record_delimiter_key: prompt_variables.get(self._record_delimiter_key)
- or DEFAULT_RECORD_DELIMITER,
- self._entity_index_dilimiter_key: prompt_variables.get(self._entity_index_dilimiter_key)
- or DEFAULT_ENTITY_INDEX_DELIMITER,
- self._resolution_result_delimiter_key: prompt_variables.get(self._resolution_result_delimiter_key)
- or DEFAULT_RESOLUTION_RESULT_DELIMITER,
- }
-
- nodes = graph.nodes
- entity_types = list(set(graph.nodes[node]['entity_type'] for node in nodes))
- node_clusters = {entity_type: [] for entity_type in entity_types}
-
- for node in nodes:
- node_clusters[graph.nodes[node]['entity_type']].append(node)
-
- candidate_resolution = {entity_type: [] for entity_type in entity_types}
- for k, v in node_clusters.items():
- candidate_resolution[k] = [(a, b) for a, b in itertools.combinations(v, 2) if self.is_similarity(a, b)]
-
- gen_conf = {"temperature": 0.5}
- resolution_result = set()
- for candidate_resolution_i in candidate_resolution.items():
- if candidate_resolution_i[1]:
- try:
- pair_txt = [
- f'When determining whether two {candidate_resolution_i[0]}s are the same, you should only focus on critical properties and overlook noisy factors.\n']
- for index, candidate in enumerate(candidate_resolution_i[1]):
- pair_txt.append(
- f'Question {index + 1}: name of{candidate_resolution_i[0]} A is {candidate[0]} ,name of{candidate_resolution_i[0]} B is {candidate[1]}')
- sent = 'question above' if len(pair_txt) == 1 else f'above {len(pair_txt)} questions'
- pair_txt.append(
- f'\nUse domain knowledge of {candidate_resolution_i[0]}s to help understand the text and answer the {sent} in the format: For Question i, Yes, {candidate_resolution_i[0]} A and {candidate_resolution_i[0]} B are the same {candidate_resolution_i[0]}./No, {candidate_resolution_i[0]} A and {candidate_resolution_i[0]} B are different {candidate_resolution_i[0]}s. For Question i+1, (repeat the above procedures)')
- pair_prompt = '\n'.join(pair_txt)
-
- variables = {
- **prompt_variables,
- self._input_text_key: pair_prompt
- }
- text = perform_variable_replacements(self._resolution_prompt, variables=variables)
-
- response = self._chat(text, [{"role": "user", "content": "Output:"}], gen_conf)
- result = self._process_results(len(candidate_resolution_i[1]), response,
- prompt_variables.get(self._record_delimiter_key,
- DEFAULT_RECORD_DELIMITER),
- prompt_variables.get(self._entity_index_dilimiter_key,
- DEFAULT_ENTITY_INDEX_DELIMITER),
- prompt_variables.get(self._resolution_result_delimiter_key,
- DEFAULT_RESOLUTION_RESULT_DELIMITER))
- for result_i in result:
- resolution_result.add(candidate_resolution_i[1][result_i[0] - 1])
- except Exception as e:
- logging.exception("error entity resolution")
- self._on_error(e, traceback.format_exc(), None)
-
- connect_graph = nx.Graph()
- connect_graph.add_edges_from(resolution_result)
- for sub_connect_graph in nx.connected_components(connect_graph):
- sub_connect_graph = connect_graph.subgraph(sub_connect_graph)
- remove_nodes = list(sub_connect_graph.nodes)
- keep_node = remove_nodes.pop()
- for remove_node in remove_nodes:
- remove_node_neighbors = graph[remove_node]
- graph.nodes[keep_node]['description'] += graph.nodes[remove_node]['description']
- graph.nodes[keep_node]['weight'] += graph.nodes[remove_node]['weight']
- remove_node_neighbors = list(remove_node_neighbors)
- for remove_node_neighbor in remove_node_neighbors:
- if remove_node_neighbor == keep_node:
- graph.remove_edge(keep_node, remove_node)
- continue
- if graph.has_edge(keep_node, remove_node_neighbor):
- graph[keep_node][remove_node_neighbor]['weight'] += graph[remove_node][remove_node_neighbor][
- 'weight']
- graph[keep_node][remove_node_neighbor]['description'] += \
- graph[remove_node][remove_node_neighbor]['description']
- graph.remove_edge(remove_node, remove_node_neighbor)
- else:
- graph.add_edge(keep_node, remove_node_neighbor,
- weight=graph[remove_node][remove_node_neighbor]['weight'],
- description=graph[remove_node][remove_node_neighbor]['description'],
- source_id="")
- graph.remove_edge(remove_node, remove_node_neighbor)
- graph.remove_node(remove_node)
-
- for node_degree in graph.degree:
- graph.nodes[str(node_degree[0])]["rank"] = int(node_degree[1])
-
- return EntityResolutionResult(
- output=graph,
- )
-
- def _process_results(
- self,
- records_length: int,
- results: str,
- record_delimiter: str,
- entity_index_delimiter: str,
- resolution_result_delimiter: str
- ) -> list:
- ans_list = []
- records = [r.strip() for r in results.split(record_delimiter)]
- for record in records:
- pattern_int = f"{re.escape(entity_index_delimiter)}(\d+){re.escape(entity_index_delimiter)}"
- match_int = re.search(pattern_int, record)
- res_int = int(str(match_int.group(1) if match_int else '0'))
- if res_int > records_length:
- continue
-
- pattern_bool = f"{re.escape(resolution_result_delimiter)}([a-zA-Z]+){re.escape(resolution_result_delimiter)}"
- match_bool = re.search(pattern_bool, record)
- res_bool = str(match_bool.group(1) if match_bool else '')
-
- if res_int and res_bool:
- if res_bool.lower() == 'yes':
- ans_list.append((res_int, "yes"))
-
- return ans_list
-
- def is_similarity(self, a, b):
- if is_english(a) and is_english(b):
- if editdistance.eval(a, b) <= min(len(a), len(b)) // 2:
- return True
-
- if len(set(a) & set(b)) > 0:
- return True
-
- return False
|