You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

task_executor.py 32KB

Removed beartype (#3528) ### What problem does this PR solve? The beartype configuration of main(64f50992e0fc4dce73e79f8b951a02e31cb2d638) is: ``` from beartype import BeartypeConf from beartype.claw import beartype_all # <-- you didn't sign up for this beartype_all(conf=BeartypeConf(violation_type=UserWarning)) # <-- emit warnings from all code ``` ragflow_server failed at a third-party package: ``` (ragflow-py3.10) zhichyu@iris:~/github.com/infiniflow/ragflow$ rm -rf logs/* && bash docker/launch_backend_service.sh Starting task_executor.py for task 0 (Attempt 1) Starting ragflow_server.py (Attempt 1) Traceback (most recent call last): File "/home/zhichyu/github.com/infiniflow/ragflow/api/ragflow_server.py", line 22, in <module> from api.utils.log_utils import initRootLogger File "/home/zhichyu/github.com/infiniflow/ragflow/api/utils/__init__.py", line 25, in <module> import requests File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/requests/__init__.py", line 43, in <module> import urllib3 File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/__init__.py", line 15, in <module> from ._base_connection import _TYPE_BODY File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/_base_connection.py", line 5, in <module> from .util.connection import _TYPE_SOCKET_OPTIONS File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/util/__init__.py", line 4, in <module> from .connection import is_connection_dropped File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/util/connection.py", line 7, in <module> from .timeout import _DEFAULT_TIMEOUT, _TYPE_TIMEOUT File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/util/timeout.py", line 20, in <module> _DEFAULT_TIMEOUT: Final[_TYPE_DEFAULT] = _TYPE_DEFAULT.token NameError: name 'Final' is not defined Traceback (most recent call last): File "/home/zhichyu/github.com/infiniflow/ragflow/rag/svr/task_executor.py", line 22, in <module> from api.utils.log_utils import initRootLogger File "/home/zhichyu/github.com/infiniflow/ragflow/api/utils/__init__.py", line 25, in <module> import requests File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/requests/__init__.py", line 43, in <module> import urllib3 File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/__init__.py", line 15, in <module> from ._base_connection import _TYPE_BODY File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/_base_connection.py", line 5, in <module> from .util.connection import _TYPE_SOCKET_OPTIONS File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/util/__init__.py", line 4, in <module> from .connection import is_connection_dropped File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/util/connection.py", line 7, in <module> from .timeout import _DEFAULT_TIMEOUT, _TYPE_TIMEOUT File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/util/timeout.py", line 20, in <module> _DEFAULT_TIMEOUT: Final[_TYPE_DEFAULT] = _TYPE_DEFAULT.token NameError: name 'Final' is not defined ``` This third-package is out of our control. I have to remove beartype entirely. ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
hace 11 meses
Feat: make document parsing and embedding batch sizes configurable via environment variables (#8266) ### Description This PR introduces two new environment variables, ‎`DOC_BULK_SIZE` and ‎`EMBEDDING_BATCH_SIZE`, to allow flexible tuning of batch sizes for document parsing and embedding vectorization in RAGFlow. By making these parameters configurable, users can optimize performance and resource usage according to their hardware capabilities and workload requirements. ### What problem does this PR solve? Previously, the batch sizes for document parsing and embedding were hardcoded, limiting the ability to adjust throughput and memory consumption. This PR enables users to set these values via environment variables (in ‎`.env`, Helm chart, or directly in the deployment environment), improving flexibility and scalability for both small and large deployments. - ‎`DOC_BULK_SIZE`: Controls how many document chunks are processed in a single batch during document parsing (default: 4). - ‎`EMBEDDING_BATCH_SIZE`: Controls how many text chunks are processed in a single batch during embedding vectorization (default: 16). This change updates the codebase, documentation, and configuration files to reflect the new options. ### Type of change - [ ] Bug Fix (non-breaking change which fixes an issue) - [x] New Feature (non-breaking change which adds functionality) - [x] Documentation Update - [ ] Refactoring - [x] Performance Improvement - [ ] Other (please describe): ### Additional context - Updated ‎`.env`, ‎`helm/values.yaml`, and documentation to describe the new variables. - Modified relevant code paths to use the environment variables instead of hardcoded values. - Users can now tune these parameters to achieve better throughput or reduce memory usage as needed. Before: Default value: <img width="643" alt="image" src="https://github.com/user-attachments/assets/086e1173-18f3-419d-a0f5-68394f63866a" /> After: 10x: <img width="777" alt="image" src="https://github.com/user-attachments/assets/5722bbc0-0bcb-4536-b928-077031e550f1" />
hace 4 meses
Fix memory leaks in PIL image and BytesIO handling during chunk processing (#8522) ### What problem does this PR solve? This PR addresses critical memory leaks in the task executor's image processing pipeline. The current implementation fails to properly dispose of PIL Image objects and BytesIO buffers during chunk processing, leading to progressive memory accumulation that can cause the task executor to consume excessive memory over time. ### Background context - The `upload_to_minio` function processes images from document chunks and converts them to JPEG format for storage. - PIL Image objects hold significant memory resources that must be explicitly closed to prevent memory leaks. - BytesIO objects also consume memory and should be properly disposed of after use. - In high-throughput scenarios with many image-containing documents, these memory leaks can lead to out-of-memory errors and degraded performance. ### Specific issues fixed - PIL Image objects were not being explicitly closed after processing. - BytesIO buffers lacked proper cleanup in all code paths. - Converted images (RGBA/P to RGB) were not disposing of the original image object. - Memory references to large image data were not being cleared promptly. ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue) - [x] Performance Improvement ### Changes made - Added explicit `d["image"].close()` calls after image processing operations. - Implemented proper cleanup of converted images when changing formats from RGBA/P to RGB. - Enhanced BytesIO cleanup with `try/finally` blocks to ensure disposal in all code paths. - Added explicit `del d["image"]` to clear memory references after processing. This fix ensures stable memory usage during long-running document processing tasks and prevents potential out-of-memory conditions in production environments.
hace 4 meses
Fix memory leaks in PIL image and BytesIO handling during chunk processing (#8522) ### What problem does this PR solve? This PR addresses critical memory leaks in the task executor's image processing pipeline. The current implementation fails to properly dispose of PIL Image objects and BytesIO buffers during chunk processing, leading to progressive memory accumulation that can cause the task executor to consume excessive memory over time. ### Background context - The `upload_to_minio` function processes images from document chunks and converts them to JPEG format for storage. - PIL Image objects hold significant memory resources that must be explicitly closed to prevent memory leaks. - BytesIO objects also consume memory and should be properly disposed of after use. - In high-throughput scenarios with many image-containing documents, these memory leaks can lead to out-of-memory errors and degraded performance. ### Specific issues fixed - PIL Image objects were not being explicitly closed after processing. - BytesIO buffers lacked proper cleanup in all code paths. - Converted images (RGBA/P to RGB) were not disposing of the original image object. - Memory references to large image data were not being cleared promptly. ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue) - [x] Performance Improvement ### Changes made - Added explicit `d["image"].close()` calls after image processing operations. - Implemented proper cleanup of converted images when changing formats from RGBA/P to RGB. - Enhanced BytesIO cleanup with `try/finally` blocks to ensure disposal in all code paths. - Added explicit `del d["image"]` to clear memory references after processing. This fix ensures stable memory usage during long-running document processing tasks and prevents potential out-of-memory conditions in production environments.
hace 4 meses
Fix memory leaks in PIL image and BytesIO handling during chunk processing (#8522) ### What problem does this PR solve? This PR addresses critical memory leaks in the task executor's image processing pipeline. The current implementation fails to properly dispose of PIL Image objects and BytesIO buffers during chunk processing, leading to progressive memory accumulation that can cause the task executor to consume excessive memory over time. ### Background context - The `upload_to_minio` function processes images from document chunks and converts them to JPEG format for storage. - PIL Image objects hold significant memory resources that must be explicitly closed to prevent memory leaks. - BytesIO objects also consume memory and should be properly disposed of after use. - In high-throughput scenarios with many image-containing documents, these memory leaks can lead to out-of-memory errors and degraded performance. ### Specific issues fixed - PIL Image objects were not being explicitly closed after processing. - BytesIO buffers lacked proper cleanup in all code paths. - Converted images (RGBA/P to RGB) were not disposing of the original image object. - Memory references to large image data were not being cleared promptly. ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue) - [x] Performance Improvement ### Changes made - Added explicit `d["image"].close()` calls after image processing operations. - Implemented proper cleanup of converted images when changing formats from RGBA/P to RGB. - Enhanced BytesIO cleanup with `try/finally` blocks to ensure disposal in all code paths. - Added explicit `del d["image"]` to clear memory references after processing. This fix ensures stable memory usage during long-running document processing tasks and prevents potential out-of-memory conditions in production environments.
hace 4 meses
fix(nursery): Fix Closure Trap Issues in Trio Concurrent Tasks (#7106) ## Problem Description Multiple files in the RAGFlow project contain closure trap issues when using lambda functions with `trio.open_nursery()`. This problem causes concurrent tasks created in loops to reference the same variable, resulting in all tasks processing the same data (the data from the last iteration) rather than each task processing its corresponding data from the loop. ## Issue Details When using a `lambda` to create a closure function and passing it to `nursery.start_soon()` within a loop, the lambda function captures a reference to the loop variable rather than its value. For example: ```python # Problematic code async with trio.open_nursery() as nursery: for d in docs: nursery.start_soon(lambda: doc_keyword_extraction(chat_mdl, d, topn)) ``` In this pattern, when concurrent tasks begin execution, `d` has already become the value after the loop ends (typically the last element), causing all tasks to use the same data. ## Fix Solution Changed the way concurrent tasks are created with `nursery.start_soon()` by leveraging Trio's API design to directly pass the function and its arguments separately: ```python # Fixed code async with trio.open_nursery() as nursery: for d in docs: nursery.start_soon(doc_keyword_extraction, chat_mdl, d, topn) ``` This way, each task uses the parameter values at the time of the function call, rather than references captured through closures. ## Fixed Files Fixed closure traps in the following files: 1. `rag/svr/task_executor.py`: 3 fixes, involving document keyword extraction, question generation, and tag processing 2. `rag/raptor.py`: 1 fix, involving document summarization 3. `graphrag/utils.py`: 2 fixes, involving graph node and edge processing 4. `graphrag/entity_resolution.py`: 2 fixes, involving entity resolution and graph node merging 5. `graphrag/general/mind_map_extractor.py`: 2 fixes, involving document processing 6. `graphrag/general/extractor.py`: 3 fixes, involving content processing and graph node/edge merging 7. `graphrag/general/community_reports_extractor.py`: 1 fix, involving community report extraction ## Potential Impact This fix resolves a serious concurrency issue that could have caused: - Data processing errors (processing duplicate data) - Performance degradation (all tasks working on the same data) - Inconsistent results (some data not being processed) After the fix, all concurrent tasks should correctly process their respective data, improving system correctness and reliability.
hace 6 meses
fix(nursery): Fix Closure Trap Issues in Trio Concurrent Tasks (#7106) ## Problem Description Multiple files in the RAGFlow project contain closure trap issues when using lambda functions with `trio.open_nursery()`. This problem causes concurrent tasks created in loops to reference the same variable, resulting in all tasks processing the same data (the data from the last iteration) rather than each task processing its corresponding data from the loop. ## Issue Details When using a `lambda` to create a closure function and passing it to `nursery.start_soon()` within a loop, the lambda function captures a reference to the loop variable rather than its value. For example: ```python # Problematic code async with trio.open_nursery() as nursery: for d in docs: nursery.start_soon(lambda: doc_keyword_extraction(chat_mdl, d, topn)) ``` In this pattern, when concurrent tasks begin execution, `d` has already become the value after the loop ends (typically the last element), causing all tasks to use the same data. ## Fix Solution Changed the way concurrent tasks are created with `nursery.start_soon()` by leveraging Trio's API design to directly pass the function and its arguments separately: ```python # Fixed code async with trio.open_nursery() as nursery: for d in docs: nursery.start_soon(doc_keyword_extraction, chat_mdl, d, topn) ``` This way, each task uses the parameter values at the time of the function call, rather than references captured through closures. ## Fixed Files Fixed closure traps in the following files: 1. `rag/svr/task_executor.py`: 3 fixes, involving document keyword extraction, question generation, and tag processing 2. `rag/raptor.py`: 1 fix, involving document summarization 3. `graphrag/utils.py`: 2 fixes, involving graph node and edge processing 4. `graphrag/entity_resolution.py`: 2 fixes, involving entity resolution and graph node merging 5. `graphrag/general/mind_map_extractor.py`: 2 fixes, involving document processing 6. `graphrag/general/extractor.py`: 3 fixes, involving content processing and graph node/edge merging 7. `graphrag/general/community_reports_extractor.py`: 1 fix, involving community report extraction ## Potential Impact This fix resolves a serious concurrency issue that could have caused: - Data processing errors (processing duplicate data) - Performance degradation (all tasks working on the same data) - Inconsistent results (some data not being processed) After the fix, all concurrent tasks should correctly process their respective data, improving system correctness and reliability.
hace 6 meses
fix(nursery): Fix Closure Trap Issues in Trio Concurrent Tasks (#7106) ## Problem Description Multiple files in the RAGFlow project contain closure trap issues when using lambda functions with `trio.open_nursery()`. This problem causes concurrent tasks created in loops to reference the same variable, resulting in all tasks processing the same data (the data from the last iteration) rather than each task processing its corresponding data from the loop. ## Issue Details When using a `lambda` to create a closure function and passing it to `nursery.start_soon()` within a loop, the lambda function captures a reference to the loop variable rather than its value. For example: ```python # Problematic code async with trio.open_nursery() as nursery: for d in docs: nursery.start_soon(lambda: doc_keyword_extraction(chat_mdl, d, topn)) ``` In this pattern, when concurrent tasks begin execution, `d` has already become the value after the loop ends (typically the last element), causing all tasks to use the same data. ## Fix Solution Changed the way concurrent tasks are created with `nursery.start_soon()` by leveraging Trio's API design to directly pass the function and its arguments separately: ```python # Fixed code async with trio.open_nursery() as nursery: for d in docs: nursery.start_soon(doc_keyword_extraction, chat_mdl, d, topn) ``` This way, each task uses the parameter values at the time of the function call, rather than references captured through closures. ## Fixed Files Fixed closure traps in the following files: 1. `rag/svr/task_executor.py`: 3 fixes, involving document keyword extraction, question generation, and tag processing 2. `rag/raptor.py`: 1 fix, involving document summarization 3. `graphrag/utils.py`: 2 fixes, involving graph node and edge processing 4. `graphrag/entity_resolution.py`: 2 fixes, involving entity resolution and graph node merging 5. `graphrag/general/mind_map_extractor.py`: 2 fixes, involving document processing 6. `graphrag/general/extractor.py`: 3 fixes, involving content processing and graph node/edge merging 7. `graphrag/general/community_reports_extractor.py`: 1 fix, involving community report extraction ## Potential Impact This fix resolves a serious concurrency issue that could have caused: - Data processing errors (processing duplicate data) - Performance degradation (all tasks working on the same data) - Inconsistent results (some data not being processed) After the fix, all concurrent tasks should correctly process their respective data, improving system correctness and reliability.
hace 6 meses
Feat: make document parsing and embedding batch sizes configurable via environment variables (#8266) ### Description This PR introduces two new environment variables, ‎`DOC_BULK_SIZE` and ‎`EMBEDDING_BATCH_SIZE`, to allow flexible tuning of batch sizes for document parsing and embedding vectorization in RAGFlow. By making these parameters configurable, users can optimize performance and resource usage according to their hardware capabilities and workload requirements. ### What problem does this PR solve? Previously, the batch sizes for document parsing and embedding were hardcoded, limiting the ability to adjust throughput and memory consumption. This PR enables users to set these values via environment variables (in ‎`.env`, Helm chart, or directly in the deployment environment), improving flexibility and scalability for both small and large deployments. - ‎`DOC_BULK_SIZE`: Controls how many document chunks are processed in a single batch during document parsing (default: 4). - ‎`EMBEDDING_BATCH_SIZE`: Controls how many text chunks are processed in a single batch during embedding vectorization (default: 16). This change updates the codebase, documentation, and configuration files to reflect the new options. ### Type of change - [ ] Bug Fix (non-breaking change which fixes an issue) - [x] New Feature (non-breaking change which adds functionality) - [x] Documentation Update - [ ] Refactoring - [x] Performance Improvement - [ ] Other (please describe): ### Additional context - Updated ‎`.env`, ‎`helm/values.yaml`, and documentation to describe the new variables. - Modified relevant code paths to use the environment variables instead of hardcoded values. - Users can now tune these parameters to achieve better throughput or reduce memory usage as needed. Before: Default value: <img width="643" alt="image" src="https://github.com/user-attachments/assets/086e1173-18f3-419d-a0f5-68394f63866a" /> After: 10x: <img width="777" alt="image" src="https://github.com/user-attachments/assets/5722bbc0-0bcb-4536-b928-077031e550f1" />
hace 4 meses
Feat: make document parsing and embedding batch sizes configurable via environment variables (#8266) ### Description This PR introduces two new environment variables, ‎`DOC_BULK_SIZE` and ‎`EMBEDDING_BATCH_SIZE`, to allow flexible tuning of batch sizes for document parsing and embedding vectorization in RAGFlow. By making these parameters configurable, users can optimize performance and resource usage according to their hardware capabilities and workload requirements. ### What problem does this PR solve? Previously, the batch sizes for document parsing and embedding were hardcoded, limiting the ability to adjust throughput and memory consumption. This PR enables users to set these values via environment variables (in ‎`.env`, Helm chart, or directly in the deployment environment), improving flexibility and scalability for both small and large deployments. - ‎`DOC_BULK_SIZE`: Controls how many document chunks are processed in a single batch during document parsing (default: 4). - ‎`EMBEDDING_BATCH_SIZE`: Controls how many text chunks are processed in a single batch during embedding vectorization (default: 16). This change updates the codebase, documentation, and configuration files to reflect the new options. ### Type of change - [ ] Bug Fix (non-breaking change which fixes an issue) - [x] New Feature (non-breaking change which adds functionality) - [x] Documentation Update - [ ] Refactoring - [x] Performance Improvement - [ ] Other (please describe): ### Additional context - Updated ‎`.env`, ‎`helm/values.yaml`, and documentation to describe the new variables. - Modified relevant code paths to use the environment variables instead of hardcoded values. - Users can now tune these parameters to achieve better throughput or reduce memory usage as needed. Before: Default value: <img width="643" alt="image" src="https://github.com/user-attachments/assets/086e1173-18f3-419d-a0f5-68394f63866a" /> After: 10x: <img width="777" alt="image" src="https://github.com/user-attachments/assets/5722bbc0-0bcb-4536-b928-077031e550f1" />
hace 4 meses
Feat: make document parsing and embedding batch sizes configurable via environment variables (#8266) ### Description This PR introduces two new environment variables, ‎`DOC_BULK_SIZE` and ‎`EMBEDDING_BATCH_SIZE`, to allow flexible tuning of batch sizes for document parsing and embedding vectorization in RAGFlow. By making these parameters configurable, users can optimize performance and resource usage according to their hardware capabilities and workload requirements. ### What problem does this PR solve? Previously, the batch sizes for document parsing and embedding were hardcoded, limiting the ability to adjust throughput and memory consumption. This PR enables users to set these values via environment variables (in ‎`.env`, Helm chart, or directly in the deployment environment), improving flexibility and scalability for both small and large deployments. - ‎`DOC_BULK_SIZE`: Controls how many document chunks are processed in a single batch during document parsing (default: 4). - ‎`EMBEDDING_BATCH_SIZE`: Controls how many text chunks are processed in a single batch during embedding vectorization (default: 16). This change updates the codebase, documentation, and configuration files to reflect the new options. ### Type of change - [ ] Bug Fix (non-breaking change which fixes an issue) - [x] New Feature (non-breaking change which adds functionality) - [x] Documentation Update - [ ] Refactoring - [x] Performance Improvement - [ ] Other (please describe): ### Additional context - Updated ‎`.env`, ‎`helm/values.yaml`, and documentation to describe the new variables. - Modified relevant code paths to use the environment variables instead of hardcoded values. - Users can now tune these parameters to achieve better throughput or reduce memory usage as needed. Before: Default value: <img width="643" alt="image" src="https://github.com/user-attachments/assets/086e1173-18f3-419d-a0f5-68394f63866a" /> After: 10x: <img width="777" alt="image" src="https://github.com/user-attachments/assets/5722bbc0-0bcb-4536-b928-077031e550f1" />
hace 4 meses
fix(nursery): Fix Closure Trap Issues in Trio Concurrent Tasks (#7106) ## Problem Description Multiple files in the RAGFlow project contain closure trap issues when using lambda functions with `trio.open_nursery()`. This problem causes concurrent tasks created in loops to reference the same variable, resulting in all tasks processing the same data (the data from the last iteration) rather than each task processing its corresponding data from the loop. ## Issue Details When using a `lambda` to create a closure function and passing it to `nursery.start_soon()` within a loop, the lambda function captures a reference to the loop variable rather than its value. For example: ```python # Problematic code async with trio.open_nursery() as nursery: for d in docs: nursery.start_soon(lambda: doc_keyword_extraction(chat_mdl, d, topn)) ``` In this pattern, when concurrent tasks begin execution, `d` has already become the value after the loop ends (typically the last element), causing all tasks to use the same data. ## Fix Solution Changed the way concurrent tasks are created with `nursery.start_soon()` by leveraging Trio's API design to directly pass the function and its arguments separately: ```python # Fixed code async with trio.open_nursery() as nursery: for d in docs: nursery.start_soon(doc_keyword_extraction, chat_mdl, d, topn) ``` This way, each task uses the parameter values at the time of the function call, rather than references captured through closures. ## Fixed Files Fixed closure traps in the following files: 1. `rag/svr/task_executor.py`: 3 fixes, involving document keyword extraction, question generation, and tag processing 2. `rag/raptor.py`: 1 fix, involving document summarization 3. `graphrag/utils.py`: 2 fixes, involving graph node and edge processing 4. `graphrag/entity_resolution.py`: 2 fixes, involving entity resolution and graph node merging 5. `graphrag/general/mind_map_extractor.py`: 2 fixes, involving document processing 6. `graphrag/general/extractor.py`: 3 fixes, involving content processing and graph node/edge merging 7. `graphrag/general/community_reports_extractor.py`: 1 fix, involving community report extraction ## Potential Impact This fix resolves a serious concurrency issue that could have caused: - Data processing errors (processing duplicate data) - Performance degradation (all tasks working on the same data) - Inconsistent results (some data not being processed) After the fix, all concurrent tasks should correctly process their respective data, improving system correctness and reliability.
hace 6 meses
fix(nursery): Fix Closure Trap Issues in Trio Concurrent Tasks (#7106) ## Problem Description Multiple files in the RAGFlow project contain closure trap issues when using lambda functions with `trio.open_nursery()`. This problem causes concurrent tasks created in loops to reference the same variable, resulting in all tasks processing the same data (the data from the last iteration) rather than each task processing its corresponding data from the loop. ## Issue Details When using a `lambda` to create a closure function and passing it to `nursery.start_soon()` within a loop, the lambda function captures a reference to the loop variable rather than its value. For example: ```python # Problematic code async with trio.open_nursery() as nursery: for d in docs: nursery.start_soon(lambda: doc_keyword_extraction(chat_mdl, d, topn)) ``` In this pattern, when concurrent tasks begin execution, `d` has already become the value after the loop ends (typically the last element), causing all tasks to use the same data. ## Fix Solution Changed the way concurrent tasks are created with `nursery.start_soon()` by leveraging Trio's API design to directly pass the function and its arguments separately: ```python # Fixed code async with trio.open_nursery() as nursery: for d in docs: nursery.start_soon(doc_keyword_extraction, chat_mdl, d, topn) ``` This way, each task uses the parameter values at the time of the function call, rather than references captured through closures. ## Fixed Files Fixed closure traps in the following files: 1. `rag/svr/task_executor.py`: 3 fixes, involving document keyword extraction, question generation, and tag processing 2. `rag/raptor.py`: 1 fix, involving document summarization 3. `graphrag/utils.py`: 2 fixes, involving graph node and edge processing 4. `graphrag/entity_resolution.py`: 2 fixes, involving entity resolution and graph node merging 5. `graphrag/general/mind_map_extractor.py`: 2 fixes, involving document processing 6. `graphrag/general/extractor.py`: 3 fixes, involving content processing and graph node/edge merging 7. `graphrag/general/community_reports_extractor.py`: 1 fix, involving community report extraction ## Potential Impact This fix resolves a serious concurrency issue that could have caused: - Data processing errors (processing duplicate data) - Performance degradation (all tasks working on the same data) - Inconsistent results (some data not being processed) After the fix, all concurrent tasks should correctly process their respective data, improving system correctness and reliability.
hace 6 meses
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. # from beartype import BeartypeConf
  16. # from beartype.claw import beartype_all # <-- you didn't sign up for this
  17. # beartype_all(conf=BeartypeConf(violation_type=UserWarning)) # <-- emit warnings from all code
  18. import random
  19. import sys
  20. import threading
  21. import time
  22. from api.utils.api_utils import timeout, is_strong_enough
  23. from api.utils.log_utils import init_root_logger, get_project_base_directory
  24. from graphrag.general.index import run_graphrag
  25. from graphrag.utils import get_llm_cache, set_llm_cache, get_tags_from_cache, set_tags_to_cache
  26. from rag.prompts import keyword_extraction, question_proposal, content_tagging
  27. import logging
  28. import os
  29. from datetime import datetime
  30. import json
  31. import xxhash
  32. import copy
  33. import re
  34. from functools import partial
  35. from io import BytesIO
  36. from multiprocessing.context import TimeoutError
  37. from timeit import default_timer as timer
  38. import tracemalloc
  39. import signal
  40. import trio
  41. import exceptiongroup
  42. import faulthandler
  43. import numpy as np
  44. from peewee import DoesNotExist
  45. from api.db import LLMType, ParserType
  46. from api.db.services.document_service import DocumentService
  47. from api.db.services.llm_service import LLMBundle
  48. from api.db.services.task_service import TaskService, has_canceled
  49. from api.db.services.file2document_service import File2DocumentService
  50. from api import settings
  51. from api.versions import get_ragflow_version
  52. from api.db.db_models import close_connection
  53. from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one, audio, \
  54. email, tag
  55. from rag.nlp import search, rag_tokenizer
  56. from rag.raptor import RecursiveAbstractiveProcessing4TreeOrganizedRetrieval as Raptor
  57. from rag.settings import DOC_MAXIMUM_SIZE, DOC_BULK_SIZE, EMBEDDING_BATCH_SIZE, SVR_CONSUMER_GROUP_NAME, get_svr_queue_name, get_svr_queue_names, print_rag_settings, TAG_FLD, PAGERANK_FLD
  58. from rag.utils import num_tokens_from_string, truncate
  59. from rag.utils.redis_conn import REDIS_CONN, RedisDistributedLock
  60. from rag.utils.storage_factory import STORAGE_IMPL
  61. from graphrag.utils import chat_limiter
  62. BATCH_SIZE = 64
  63. FACTORY = {
  64. "general": naive,
  65. ParserType.NAIVE.value: naive,
  66. ParserType.PAPER.value: paper,
  67. ParserType.BOOK.value: book,
  68. ParserType.PRESENTATION.value: presentation,
  69. ParserType.MANUAL.value: manual,
  70. ParserType.LAWS.value: laws,
  71. ParserType.QA.value: qa,
  72. ParserType.TABLE.value: table,
  73. ParserType.RESUME.value: resume,
  74. ParserType.PICTURE.value: picture,
  75. ParserType.ONE.value: one,
  76. ParserType.AUDIO.value: audio,
  77. ParserType.EMAIL.value: email,
  78. ParserType.KG.value: naive,
  79. ParserType.TAG.value: tag
  80. }
  81. UNACKED_ITERATOR = None
  82. CONSUMER_NO = "0" if len(sys.argv) < 2 else sys.argv[1]
  83. CONSUMER_NAME = "task_executor_" + CONSUMER_NO
  84. BOOT_AT = datetime.now().astimezone().isoformat(timespec="milliseconds")
  85. PENDING_TASKS = 0
  86. LAG_TASKS = 0
  87. DONE_TASKS = 0
  88. FAILED_TASKS = 0
  89. CURRENT_TASKS = {}
  90. MAX_CONCURRENT_TASKS = int(os.environ.get('MAX_CONCURRENT_TASKS', "5"))
  91. MAX_CONCURRENT_CHUNK_BUILDERS = int(os.environ.get('MAX_CONCURRENT_CHUNK_BUILDERS', "1"))
  92. MAX_CONCURRENT_MINIO = int(os.environ.get('MAX_CONCURRENT_MINIO', '10'))
  93. task_limiter = trio.Semaphore(MAX_CONCURRENT_TASKS)
  94. chunk_limiter = trio.CapacityLimiter(MAX_CONCURRENT_CHUNK_BUILDERS)
  95. embed_limiter = trio.CapacityLimiter(MAX_CONCURRENT_CHUNK_BUILDERS)
  96. minio_limiter = trio.CapacityLimiter(MAX_CONCURRENT_MINIO)
  97. kg_limiter = trio.CapacityLimiter(2)
  98. WORKER_HEARTBEAT_TIMEOUT = int(os.environ.get('WORKER_HEARTBEAT_TIMEOUT', '120'))
  99. stop_event = threading.Event()
  100. def signal_handler(sig, frame):
  101. logging.info("Received interrupt signal, shutting down...")
  102. stop_event.set()
  103. time.sleep(1)
  104. sys.exit(0)
  105. # SIGUSR1 handler: start tracemalloc and take snapshot
  106. def start_tracemalloc_and_snapshot(signum, frame):
  107. if not tracemalloc.is_tracing():
  108. logging.info("start tracemalloc")
  109. tracemalloc.start()
  110. else:
  111. logging.info("tracemalloc is already running")
  112. timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
  113. snapshot_file = f"snapshot_{timestamp}.trace"
  114. snapshot_file = os.path.abspath(os.path.join(get_project_base_directory(), "logs", f"{os.getpid()}_snapshot_{timestamp}.trace"))
  115. snapshot = tracemalloc.take_snapshot()
  116. snapshot.dump(snapshot_file)
  117. current, peak = tracemalloc.get_traced_memory()
  118. if sys.platform == "win32":
  119. import psutil
  120. process = psutil.Process()
  121. max_rss = process.memory_info().rss / 1024
  122. else:
  123. import resource
  124. max_rss = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
  125. logging.info(f"taken snapshot {snapshot_file}. max RSS={max_rss / 1000:.2f} MB, current memory usage: {current / 10**6:.2f} MB, Peak memory usage: {peak / 10**6:.2f} MB")
  126. # SIGUSR2 handler: stop tracemalloc
  127. def stop_tracemalloc(signum, frame):
  128. if tracemalloc.is_tracing():
  129. logging.info("stop tracemalloc")
  130. tracemalloc.stop()
  131. else:
  132. logging.info("tracemalloc not running")
  133. class TaskCanceledException(Exception):
  134. def __init__(self, msg):
  135. self.msg = msg
  136. def set_progress(task_id, from_page=0, to_page=-1, prog=None, msg="Processing..."):
  137. try:
  138. if prog is not None and prog < 0:
  139. msg = "[ERROR]" + msg
  140. cancel = has_canceled(task_id)
  141. if cancel:
  142. msg += " [Canceled]"
  143. prog = -1
  144. if to_page > 0:
  145. if msg:
  146. if from_page < to_page:
  147. msg = f"Page({from_page + 1}~{to_page + 1}): " + msg
  148. if msg:
  149. msg = datetime.now().strftime("%H:%M:%S") + " " + msg
  150. d = {"progress_msg": msg}
  151. if prog is not None:
  152. d["progress"] = prog
  153. TaskService.update_progress(task_id, d)
  154. close_connection()
  155. if cancel:
  156. raise TaskCanceledException(msg)
  157. logging.info(f"set_progress({task_id}), progress: {prog}, progress_msg: {msg}")
  158. except DoesNotExist:
  159. logging.warning(f"set_progress({task_id}) got exception DoesNotExist")
  160. except Exception:
  161. logging.exception(f"set_progress({task_id}), progress: {prog}, progress_msg: {msg}, got exception")
  162. async def collect():
  163. global CONSUMER_NAME, DONE_TASKS, FAILED_TASKS
  164. global UNACKED_ITERATOR
  165. svr_queue_names = get_svr_queue_names()
  166. try:
  167. if not UNACKED_ITERATOR:
  168. UNACKED_ITERATOR = REDIS_CONN.get_unacked_iterator(svr_queue_names, SVR_CONSUMER_GROUP_NAME, CONSUMER_NAME)
  169. try:
  170. redis_msg = next(UNACKED_ITERATOR)
  171. except StopIteration:
  172. for svr_queue_name in svr_queue_names:
  173. redis_msg = REDIS_CONN.queue_consumer(svr_queue_name, SVR_CONSUMER_GROUP_NAME, CONSUMER_NAME)
  174. if redis_msg:
  175. break
  176. except Exception:
  177. logging.exception("collect got exception")
  178. return None, None
  179. if not redis_msg:
  180. return None, None
  181. msg = redis_msg.get_message()
  182. if not msg:
  183. logging.error(f"collect got empty message of {redis_msg.get_msg_id()}")
  184. redis_msg.ack()
  185. return None, None
  186. canceled = False
  187. task = TaskService.get_task(msg["id"])
  188. if task:
  189. canceled = has_canceled(task["id"])
  190. if not task or canceled:
  191. state = "is unknown" if not task else "has been cancelled"
  192. FAILED_TASKS += 1
  193. logging.warning(f"collect task {msg['id']} {state}")
  194. redis_msg.ack()
  195. return None, None
  196. task["task_type"] = msg.get("task_type", "")
  197. return redis_msg, task
  198. async def get_storage_binary(bucket, name):
  199. return await trio.to_thread.run_sync(lambda: STORAGE_IMPL.get(bucket, name))
  200. @timeout(60*40, 1)
  201. async def build_chunks(task, progress_callback):
  202. if task["size"] > DOC_MAXIMUM_SIZE:
  203. set_progress(task["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
  204. (int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
  205. return []
  206. chunker = FACTORY[task["parser_id"].lower()]
  207. try:
  208. st = timer()
  209. bucket, name = File2DocumentService.get_storage_address(doc_id=task["doc_id"])
  210. binary = await get_storage_binary(bucket, name)
  211. logging.info("From minio({}) {}/{}".format(timer() - st, task["location"], task["name"]))
  212. except TimeoutError:
  213. progress_callback(-1, "Internal server error: Fetch file from minio timeout. Could you try it again.")
  214. logging.exception(
  215. "Minio {}/{} got timeout: Fetch file from minio timeout.".format(task["location"], task["name"]))
  216. raise
  217. except Exception as e:
  218. if re.search("(No such file|not found)", str(e)):
  219. progress_callback(-1, "Can not find file <%s> from minio. Could you try it again?" % task["name"])
  220. else:
  221. progress_callback(-1, "Get file from minio: %s" % str(e).replace("'", ""))
  222. logging.exception("Chunking {}/{} got exception".format(task["location"], task["name"]))
  223. raise
  224. try:
  225. async with chunk_limiter:
  226. cks = await trio.to_thread.run_sync(lambda: chunker.chunk(task["name"], binary=binary, from_page=task["from_page"],
  227. to_page=task["to_page"], lang=task["language"], callback=progress_callback,
  228. kb_id=task["kb_id"], parser_config=task["parser_config"], tenant_id=task["tenant_id"]))
  229. logging.info("Chunking({}) {}/{} done".format(timer() - st, task["location"], task["name"]))
  230. except TaskCanceledException:
  231. raise
  232. except Exception as e:
  233. progress_callback(-1, "Internal server error while chunking: %s" % str(e).replace("'", ""))
  234. logging.exception("Chunking {}/{} got exception".format(task["location"], task["name"]))
  235. raise
  236. docs = []
  237. doc = {
  238. "doc_id": task["doc_id"],
  239. "kb_id": str(task["kb_id"])
  240. }
  241. if task["pagerank"]:
  242. doc[PAGERANK_FLD] = int(task["pagerank"])
  243. st = timer()
  244. @timeout(60)
  245. async def upload_to_minio(document, chunk):
  246. try:
  247. d = copy.deepcopy(document)
  248. d.update(chunk)
  249. d["id"] = xxhash.xxh64((chunk["content_with_weight"] + str(d["doc_id"])).encode("utf-8", "surrogatepass")).hexdigest()
  250. d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
  251. d["create_timestamp_flt"] = datetime.now().timestamp()
  252. if not d.get("image"):
  253. _ = d.pop("image", None)
  254. d["img_id"] = ""
  255. docs.append(d)
  256. return
  257. output_buffer = BytesIO()
  258. try:
  259. if isinstance(d["image"], bytes):
  260. output_buffer.write(d["image"])
  261. output_buffer.seek(0)
  262. else:
  263. # If the image is in RGBA mode, convert it to RGB mode before saving it in JPEG format.
  264. if d["image"].mode in ("RGBA", "P"):
  265. converted_image = d["image"].convert("RGB")
  266. d["image"].close() # Close original image
  267. d["image"] = converted_image
  268. d["image"].save(output_buffer, format='JPEG')
  269. async with minio_limiter:
  270. await trio.to_thread.run_sync(lambda: STORAGE_IMPL.put(task["kb_id"], d["id"], output_buffer.getvalue()))
  271. d["img_id"] = "{}-{}".format(task["kb_id"], d["id"])
  272. if not isinstance(d["image"], bytes):
  273. d["image"].close()
  274. del d["image"] # Remove image reference
  275. docs.append(d)
  276. finally:
  277. output_buffer.close() # Ensure BytesIO is always closed
  278. except Exception:
  279. logging.exception(
  280. "Saving image of chunk {}/{}/{} got exception".format(task["location"], task["name"], d["id"]))
  281. raise
  282. async with trio.open_nursery() as nursery:
  283. for ck in cks:
  284. nursery.start_soon(upload_to_minio, doc, ck)
  285. el = timer() - st
  286. logging.info("MINIO PUT({}) cost {:.3f} s".format(task["name"], el))
  287. if task["parser_config"].get("auto_keywords", 0):
  288. st = timer()
  289. progress_callback(msg="Start to generate keywords for every chunk ...")
  290. chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"])
  291. async def doc_keyword_extraction(chat_mdl, d, topn):
  292. cached = get_llm_cache(chat_mdl.llm_name, d["content_with_weight"], "keywords", {"topn": topn})
  293. if not cached:
  294. async with chat_limiter:
  295. cached = await trio.to_thread.run_sync(lambda: keyword_extraction(chat_mdl, d["content_with_weight"], topn))
  296. set_llm_cache(chat_mdl.llm_name, d["content_with_weight"], cached, "keywords", {"topn": topn})
  297. if cached:
  298. d["important_kwd"] = cached.split(",")
  299. d["important_tks"] = rag_tokenizer.tokenize(" ".join(d["important_kwd"]))
  300. return
  301. async with trio.open_nursery() as nursery:
  302. for d in docs:
  303. nursery.start_soon(doc_keyword_extraction, chat_mdl, d, task["parser_config"]["auto_keywords"])
  304. progress_callback(msg="Keywords generation {} chunks completed in {:.2f}s".format(len(docs), timer() - st))
  305. if task["parser_config"].get("auto_questions", 0):
  306. st = timer()
  307. progress_callback(msg="Start to generate questions for every chunk ...")
  308. chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"])
  309. async def doc_question_proposal(chat_mdl, d, topn):
  310. cached = get_llm_cache(chat_mdl.llm_name, d["content_with_weight"], "question", {"topn": topn})
  311. if not cached:
  312. async with chat_limiter:
  313. cached = await trio.to_thread.run_sync(lambda: question_proposal(chat_mdl, d["content_with_weight"], topn))
  314. set_llm_cache(chat_mdl.llm_name, d["content_with_weight"], cached, "question", {"topn": topn})
  315. if cached:
  316. d["question_kwd"] = cached.split("\n")
  317. d["question_tks"] = rag_tokenizer.tokenize("\n".join(d["question_kwd"]))
  318. async with trio.open_nursery() as nursery:
  319. for d in docs:
  320. nursery.start_soon(doc_question_proposal, chat_mdl, d, task["parser_config"]["auto_questions"])
  321. progress_callback(msg="Question generation {} chunks completed in {:.2f}s".format(len(docs), timer() - st))
  322. if task["kb_parser_config"].get("tag_kb_ids", []):
  323. progress_callback(msg="Start to tag for every chunk ...")
  324. kb_ids = task["kb_parser_config"]["tag_kb_ids"]
  325. tenant_id = task["tenant_id"]
  326. topn_tags = task["kb_parser_config"].get("topn_tags", 3)
  327. S = 1000
  328. st = timer()
  329. examples = []
  330. all_tags = get_tags_from_cache(kb_ids)
  331. if not all_tags:
  332. all_tags = settings.retrievaler.all_tags_in_portion(tenant_id, kb_ids, S)
  333. set_tags_to_cache(kb_ids, all_tags)
  334. else:
  335. all_tags = json.loads(all_tags)
  336. chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"])
  337. docs_to_tag = []
  338. for d in docs:
  339. task_canceled = has_canceled(task["id"])
  340. if task_canceled:
  341. progress_callback(-1, msg="Task has been canceled.")
  342. return
  343. if settings.retrievaler.tag_content(tenant_id, kb_ids, d, all_tags, topn_tags=topn_tags, S=S) and len(d[TAG_FLD]) > 0:
  344. examples.append({"content": d["content_with_weight"], TAG_FLD: d[TAG_FLD]})
  345. else:
  346. docs_to_tag.append(d)
  347. async def doc_content_tagging(chat_mdl, d, topn_tags):
  348. cached = get_llm_cache(chat_mdl.llm_name, d["content_with_weight"], all_tags, {"topn": topn_tags})
  349. if not cached:
  350. picked_examples = random.choices(examples, k=2) if len(examples)>2 else examples
  351. if not picked_examples:
  352. picked_examples.append({"content": "This is an example", TAG_FLD: {'example': 1}})
  353. async with chat_limiter:
  354. cached = await trio.to_thread.run_sync(lambda: content_tagging(chat_mdl, d["content_with_weight"], all_tags, picked_examples, topn=topn_tags))
  355. if cached:
  356. cached = json.dumps(cached)
  357. if cached:
  358. set_llm_cache(chat_mdl.llm_name, d["content_with_weight"], cached, all_tags, {"topn": topn_tags})
  359. d[TAG_FLD] = json.loads(cached)
  360. async with trio.open_nursery() as nursery:
  361. for d in docs_to_tag:
  362. nursery.start_soon(doc_content_tagging, chat_mdl, d, topn_tags)
  363. progress_callback(msg="Tagging {} chunks completed in {:.2f}s".format(len(docs), timer() - st))
  364. return docs
  365. def init_kb(row, vector_size: int):
  366. idxnm = search.index_name(row["tenant_id"])
  367. return settings.docStoreConn.createIdx(idxnm, row.get("kb_id", ""), vector_size)
  368. async def embedding(docs, mdl, parser_config=None, callback=None):
  369. if parser_config is None:
  370. parser_config = {}
  371. tts, cnts = [], []
  372. for d in docs:
  373. tts.append(d.get("docnm_kwd", "Title"))
  374. c = "\n".join(d.get("question_kwd", []))
  375. if not c:
  376. c = d["content_with_weight"]
  377. c = re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", c)
  378. if not c:
  379. c = "None"
  380. cnts.append(c)
  381. tk_count = 0
  382. if len(tts) == len(cnts):
  383. vts, c = await trio.to_thread.run_sync(lambda: mdl.encode(tts[0: 1]))
  384. tts = np.concatenate([vts for _ in range(len(tts))], axis=0)
  385. tk_count += c
  386. @timeout(5)
  387. def batch_encode(txts):
  388. nonlocal mdl
  389. return mdl.encode([truncate(c, mdl.max_length-10) for c in txts])
  390. cnts_ = np.array([])
  391. for i in range(0, len(cnts), EMBEDDING_BATCH_SIZE):
  392. async with embed_limiter:
  393. vts, c = await trio.to_thread.run_sync(lambda: batch_encode(cnts[i: i + EMBEDDING_BATCH_SIZE]))
  394. if len(cnts_) == 0:
  395. cnts_ = vts
  396. else:
  397. cnts_ = np.concatenate((cnts_, vts), axis=0)
  398. tk_count += c
  399. callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="")
  400. cnts = cnts_
  401. filename_embd_weight = parser_config.get("filename_embd_weight", 0.1) # due to the db support none value
  402. if not filename_embd_weight:
  403. filename_embd_weight = 0.1
  404. title_w = float(filename_embd_weight)
  405. vects = (title_w * tts + (1 - title_w) *
  406. cnts) if len(tts) == len(cnts) else cnts
  407. assert len(vects) == len(docs)
  408. vector_size = 0
  409. for i, d in enumerate(docs):
  410. v = vects[i].tolist()
  411. vector_size = len(v)
  412. d["q_%d_vec" % len(v)] = v
  413. return tk_count, vector_size
  414. @timeout(3600)
  415. async def run_raptor(row, chat_mdl, embd_mdl, vector_size, callback=None):
  416. # Pressure test for GraphRAG task
  417. await is_strong_enough(chat_mdl, embd_mdl)
  418. chunks = []
  419. vctr_nm = "q_%d_vec"%vector_size
  420. for d in settings.retrievaler.chunk_list(row["doc_id"], row["tenant_id"], [str(row["kb_id"])],
  421. fields=["content_with_weight", vctr_nm]):
  422. chunks.append((d["content_with_weight"], np.array(d[vctr_nm])))
  423. raptor = Raptor(
  424. row["parser_config"]["raptor"].get("max_cluster", 64),
  425. chat_mdl,
  426. embd_mdl,
  427. row["parser_config"]["raptor"]["prompt"],
  428. row["parser_config"]["raptor"]["max_token"],
  429. row["parser_config"]["raptor"]["threshold"]
  430. )
  431. original_length = len(chunks)
  432. chunks = await raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback)
  433. doc = {
  434. "doc_id": row["doc_id"],
  435. "kb_id": [str(row["kb_id"])],
  436. "docnm_kwd": row["name"],
  437. "title_tks": rag_tokenizer.tokenize(row["name"])
  438. }
  439. if row["pagerank"]:
  440. doc[PAGERANK_FLD] = int(row["pagerank"])
  441. res = []
  442. tk_count = 0
  443. for content, vctr in chunks[original_length:]:
  444. d = copy.deepcopy(doc)
  445. d["id"] = xxhash.xxh64((content + str(d["doc_id"])).encode("utf-8")).hexdigest()
  446. d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
  447. d["create_timestamp_flt"] = datetime.now().timestamp()
  448. d[vctr_nm] = vctr.tolist()
  449. d["content_with_weight"] = content
  450. d["content_ltks"] = rag_tokenizer.tokenize(content)
  451. d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
  452. res.append(d)
  453. tk_count += num_tokens_from_string(content)
  454. return res, tk_count
  455. @timeout(60*60, 1)
  456. async def do_handle_task(task):
  457. task_id = task["id"]
  458. task_from_page = task["from_page"]
  459. task_to_page = task["to_page"]
  460. task_tenant_id = task["tenant_id"]
  461. task_embedding_id = task["embd_id"]
  462. task_language = task["language"]
  463. task_llm_id = task["llm_id"]
  464. task_dataset_id = task["kb_id"]
  465. task_doc_id = task["doc_id"]
  466. task_document_name = task["name"]
  467. task_parser_config = task["parser_config"]
  468. task_start_ts = timer()
  469. # prepare the progress callback function
  470. progress_callback = partial(set_progress, task_id, task_from_page, task_to_page)
  471. # FIXME: workaround, Infinity doesn't support table parsing method, this check is to notify user
  472. lower_case_doc_engine = settings.DOC_ENGINE.lower()
  473. if lower_case_doc_engine == 'infinity' and task['parser_id'].lower() == 'table':
  474. error_message = "Table parsing method is not supported by Infinity, please use other parsing methods or use Elasticsearch as the document engine."
  475. progress_callback(-1, msg=error_message)
  476. raise Exception(error_message)
  477. task_canceled = has_canceled(task_id)
  478. if task_canceled:
  479. progress_callback(-1, msg="Task has been canceled.")
  480. return
  481. try:
  482. # bind embedding model
  483. embedding_model = LLMBundle(task_tenant_id, LLMType.EMBEDDING, llm_name=task_embedding_id, lang=task_language)
  484. await is_strong_enough(None, embedding_model)
  485. vts, _ = embedding_model.encode(["ok"])
  486. vector_size = len(vts[0])
  487. except Exception as e:
  488. error_message = f'Fail to bind embedding model: {str(e)}'
  489. progress_callback(-1, msg=error_message)
  490. logging.exception(error_message)
  491. raise
  492. init_kb(task, vector_size)
  493. # Either using RAPTOR or Standard chunking methods
  494. if task.get("task_type", "") == "raptor":
  495. # bind LLM for raptor
  496. chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
  497. await is_strong_enough(chat_model, None)
  498. # run RAPTOR
  499. async with kg_limiter:
  500. chunks, token_count = await run_raptor(task, chat_model, embedding_model, vector_size, progress_callback)
  501. # Either using graphrag or Standard chunking methods
  502. elif task.get("task_type", "") == "graphrag":
  503. if not task_parser_config.get("graphrag", {}).get("use_graphrag", False):
  504. progress_callback(prog=-1.0, msg="Internal configuration error.")
  505. return
  506. graphrag_conf = task["kb_parser_config"].get("graphrag", {})
  507. start_ts = timer()
  508. chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
  509. await is_strong_enough(chat_model, None)
  510. with_resolution = graphrag_conf.get("resolution", False)
  511. with_community = graphrag_conf.get("community", False)
  512. async with kg_limiter:
  513. await run_graphrag(task, task_language, with_resolution, with_community, chat_model, embedding_model, progress_callback)
  514. progress_callback(prog=1.0, msg="Knowledge Graph done ({:.2f}s)".format(timer() - start_ts))
  515. return
  516. else:
  517. # Standard chunking methods
  518. start_ts = timer()
  519. chunks = await build_chunks(task, progress_callback)
  520. logging.info("Build document {}: {:.2f}s".format(task_document_name, timer() - start_ts))
  521. if not chunks:
  522. progress_callback(1., msg=f"No chunk built from {task_document_name}")
  523. return
  524. # TODO: exception handler
  525. ## set_progress(task["did"], -1, "ERROR: ")
  526. progress_callback(msg="Generate {} chunks".format(len(chunks)))
  527. start_ts = timer()
  528. try:
  529. token_count, vector_size = await embedding(chunks, embedding_model, task_parser_config, progress_callback)
  530. except Exception as e:
  531. error_message = "Generate embedding error:{}".format(str(e))
  532. progress_callback(-1, error_message)
  533. logging.exception(error_message)
  534. token_count = 0
  535. raise
  536. progress_message = "Embedding chunks ({:.2f}s)".format(timer() - start_ts)
  537. logging.info(progress_message)
  538. progress_callback(msg=progress_message)
  539. chunk_count = len(set([chunk["id"] for chunk in chunks]))
  540. start_ts = timer()
  541. doc_store_result = ""
  542. async def delete_image(kb_id, chunk_id):
  543. try:
  544. async with minio_limiter:
  545. STORAGE_IMPL.delete(kb_id, chunk_id)
  546. except Exception:
  547. logging.exception(
  548. "Deleting image of chunk {}/{}/{} got exception".format(task["location"], task["name"], chunk_id))
  549. raise
  550. for b in range(0, len(chunks), DOC_BULK_SIZE):
  551. doc_store_result = await trio.to_thread.run_sync(lambda: settings.docStoreConn.insert(chunks[b:b + DOC_BULK_SIZE], search.index_name(task_tenant_id), task_dataset_id))
  552. task_canceled = has_canceled(task_id)
  553. if task_canceled:
  554. progress_callback(-1, msg="Task has been canceled.")
  555. return
  556. if b % 128 == 0:
  557. progress_callback(prog=0.8 + 0.1 * (b + 1) / len(chunks), msg="")
  558. if doc_store_result:
  559. error_message = f"Insert chunk error: {doc_store_result}, please check log file and Elasticsearch/Infinity status!"
  560. progress_callback(-1, msg=error_message)
  561. raise Exception(error_message)
  562. chunk_ids = [chunk["id"] for chunk in chunks[:b + DOC_BULK_SIZE]]
  563. chunk_ids_str = " ".join(chunk_ids)
  564. try:
  565. TaskService.update_chunk_ids(task["id"], chunk_ids_str)
  566. except DoesNotExist:
  567. logging.warning(f"do_handle_task update_chunk_ids failed since task {task['id']} is unknown.")
  568. doc_store_result = await trio.to_thread.run_sync(lambda: settings.docStoreConn.delete({"id": chunk_ids}, search.index_name(task_tenant_id), task_dataset_id))
  569. async with trio.open_nursery() as nursery:
  570. for chunk_id in chunk_ids:
  571. nursery.start_soon(delete_image, task_dataset_id, chunk_id)
  572. progress_callback(-1, msg=f"Chunk updates failed since task {task['id']} is unknown.")
  573. return
  574. logging.info("Indexing doc({}), page({}-{}), chunks({}), elapsed: {:.2f}".format(task_document_name, task_from_page,
  575. task_to_page, len(chunks),
  576. timer() - start_ts))
  577. DocumentService.increment_chunk_num(task_doc_id, task_dataset_id, token_count, chunk_count, 0)
  578. time_cost = timer() - start_ts
  579. task_time_cost = timer() - task_start_ts
  580. progress_callback(prog=1.0, msg="Indexing done ({:.2f}s). Task done ({:.2f}s)".format(time_cost, task_time_cost))
  581. logging.info(
  582. "Chunk doc({}), page({}-{}), chunks({}), token({}), elapsed:{:.2f}".format(task_document_name, task_from_page,
  583. task_to_page, len(chunks),
  584. token_count, task_time_cost))
  585. async def handle_task():
  586. global DONE_TASKS, FAILED_TASKS
  587. redis_msg, task = await collect()
  588. if not task:
  589. await trio.sleep(5)
  590. return
  591. try:
  592. logging.info(f"handle_task begin for task {json.dumps(task)}")
  593. CURRENT_TASKS[task["id"]] = copy.deepcopy(task)
  594. await do_handle_task(task)
  595. DONE_TASKS += 1
  596. CURRENT_TASKS.pop(task["id"], None)
  597. logging.info(f"handle_task done for task {json.dumps(task)}")
  598. except Exception as e:
  599. FAILED_TASKS += 1
  600. CURRENT_TASKS.pop(task["id"], None)
  601. try:
  602. err_msg = str(e)
  603. while isinstance(e, exceptiongroup.ExceptionGroup):
  604. e = e.exceptions[0]
  605. err_msg += ' -- ' + str(e)
  606. set_progress(task["id"], prog=-1, msg=f"[Exception]: {err_msg}")
  607. except Exception:
  608. pass
  609. logging.exception(f"handle_task got exception for task {json.dumps(task)}")
  610. redis_msg.ack()
  611. async def report_status():
  612. global CONSUMER_NAME, BOOT_AT, PENDING_TASKS, LAG_TASKS, DONE_TASKS, FAILED_TASKS
  613. REDIS_CONN.sadd("TASKEXE", CONSUMER_NAME)
  614. redis_lock = RedisDistributedLock("clean_task_executor", lock_value=CONSUMER_NAME, timeout=60)
  615. while True:
  616. try:
  617. now = datetime.now()
  618. group_info = REDIS_CONN.queue_info(get_svr_queue_name(0), SVR_CONSUMER_GROUP_NAME)
  619. if group_info is not None:
  620. PENDING_TASKS = int(group_info.get("pending", 0))
  621. LAG_TASKS = int(group_info.get("lag", 0))
  622. current = copy.deepcopy(CURRENT_TASKS)
  623. heartbeat = json.dumps({
  624. "name": CONSUMER_NAME,
  625. "now": now.astimezone().isoformat(timespec="milliseconds"),
  626. "boot_at": BOOT_AT,
  627. "pending": PENDING_TASKS,
  628. "lag": LAG_TASKS,
  629. "done": DONE_TASKS,
  630. "failed": FAILED_TASKS,
  631. "current": current,
  632. })
  633. REDIS_CONN.zadd(CONSUMER_NAME, heartbeat, now.timestamp())
  634. logging.info(f"{CONSUMER_NAME} reported heartbeat: {heartbeat}")
  635. expired = REDIS_CONN.zcount(CONSUMER_NAME, 0, now.timestamp() - 60 * 30)
  636. if expired > 0:
  637. REDIS_CONN.zpopmin(CONSUMER_NAME, expired)
  638. # clean task executor
  639. if redis_lock.acquire():
  640. task_executors = REDIS_CONN.smembers("TASKEXE")
  641. for consumer_name in task_executors:
  642. if consumer_name == CONSUMER_NAME:
  643. continue
  644. expired = REDIS_CONN.zcount(
  645. consumer_name, now.timestamp() - WORKER_HEARTBEAT_TIMEOUT, now.timestamp() + 10
  646. )
  647. if expired == 0:
  648. logging.info(f"{consumer_name} expired, removed")
  649. REDIS_CONN.srem("TASKEXE", consumer_name)
  650. REDIS_CONN.delete(consumer_name)
  651. except Exception:
  652. logging.exception("report_status got exception")
  653. finally:
  654. redis_lock.release()
  655. await trio.sleep(30)
  656. async def task_manager():
  657. try:
  658. await handle_task()
  659. finally:
  660. task_limiter.release()
  661. async def main():
  662. logging.info(r"""
  663. ______ __ ______ __
  664. /_ __/___ ______/ /__ / ____/ _____ _______ __/ /_____ _____
  665. / / / __ `/ ___/ //_/ / __/ | |/_/ _ \/ ___/ / / / __/ __ \/ ___/
  666. / / / /_/ (__ ) ,< / /____> </ __/ /__/ /_/ / /_/ /_/ / /
  667. /_/ \__,_/____/_/|_| /_____/_/|_|\___/\___/\__,_/\__/\____/_/
  668. """)
  669. logging.info(f'TaskExecutor: RAGFlow version: {get_ragflow_version()}')
  670. settings.init_settings()
  671. print_rag_settings()
  672. if sys.platform != "win32":
  673. signal.signal(signal.SIGUSR1, start_tracemalloc_and_snapshot)
  674. signal.signal(signal.SIGUSR2, stop_tracemalloc)
  675. TRACE_MALLOC_ENABLED = int(os.environ.get('TRACE_MALLOC_ENABLED', "0"))
  676. if TRACE_MALLOC_ENABLED:
  677. start_tracemalloc_and_snapshot(None, None)
  678. signal.signal(signal.SIGINT, signal_handler)
  679. signal.signal(signal.SIGTERM, signal_handler)
  680. async with trio.open_nursery() as nursery:
  681. nursery.start_soon(report_status)
  682. while not stop_event.is_set():
  683. await task_limiter.acquire()
  684. nursery.start_soon(task_manager)
  685. logging.error("BUG!!! You should not reach here!!!")
  686. if __name__ == "__main__":
  687. faulthandler.enable()
  688. init_root_logger(CONSUMER_NAME)
  689. trio.run(main)