Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

task_executor.py 10KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import datetime
  17. import json
  18. import logging
  19. import os
  20. import hashlib
  21. import copy
  22. import re
  23. import sys
  24. import time
  25. import traceback
  26. from functools import partial
  27. from api.db.services.file2document_service import File2DocumentService
  28. from rag.utils.minio_conn import MINIO
  29. from api.db.db_models import close_connection
  30. from rag.settings import database_logger, SVR_QUEUE_NAME
  31. from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
  32. from multiprocessing import Pool
  33. import numpy as np
  34. from elasticsearch_dsl import Q
  35. from multiprocessing.context import TimeoutError
  36. from api.db.services.task_service import TaskService
  37. from rag.utils.es_conn import ELASTICSEARCH
  38. from timeit import default_timer as timer
  39. from rag.utils import rmSpace, findMaxTm
  40. from rag.nlp import search
  41. from io import BytesIO
  42. import pandas as pd
  43. from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one
  44. from api.db import LLMType, ParserType
  45. from api.db.services.document_service import DocumentService
  46. from api.db.services.llm_service import LLMBundle
  47. from api.utils.file_utils import get_project_base_directory
  48. from rag.utils.redis_conn import REDIS_CONN
  49. BATCH_SIZE = 64
  50. FACTORY = {
  51. "general": naive,
  52. ParserType.NAIVE.value: naive,
  53. ParserType.PAPER.value: paper,
  54. ParserType.BOOK.value: book,
  55. ParserType.PRESENTATION.value: presentation,
  56. ParserType.MANUAL.value: manual,
  57. ParserType.LAWS.value: laws,
  58. ParserType.QA.value: qa,
  59. ParserType.TABLE.value: table,
  60. ParserType.RESUME.value: resume,
  61. ParserType.PICTURE.value: picture,
  62. ParserType.ONE.value: one,
  63. }
  64. def set_progress(task_id, from_page=0, to_page=-1,
  65. prog=None, msg="Processing..."):
  66. if prog is not None and prog < 0:
  67. msg = "[ERROR]" + msg
  68. cancel = TaskService.do_cancel(task_id)
  69. if cancel:
  70. msg += " [Canceled]"
  71. prog = -1
  72. if to_page > 0:
  73. if msg:
  74. msg = f"Page({from_page+1}~{to_page+1}): " + msg
  75. d = {"progress_msg": msg}
  76. if prog is not None:
  77. d["progress"] = prog
  78. try:
  79. TaskService.update_progress(task_id, d)
  80. except Exception as e:
  81. cron_logger.error("set_progress:({}), {}".format(task_id, str(e)))
  82. close_connection()
  83. if cancel:
  84. sys.exit()
  85. def collect():
  86. try:
  87. payload = REDIS_CONN.queue_consumer(SVR_QUEUE_NAME, "rag_flow_svr_task_broker", "rag_flow_svr_task_consumer")
  88. if not payload:
  89. time.sleep(1)
  90. return pd.DataFrame()
  91. except Exception as e:
  92. cron_logger.error("Get task event from queue exception:" + str(e))
  93. return pd.DataFrame()
  94. msg = payload.get_message()
  95. payload.ack()
  96. if not msg: return pd.DataFrame()
  97. if TaskService.do_cancel(msg["id"]):
  98. return pd.DataFrame()
  99. tasks = TaskService.get_tasks(msg["id"])
  100. assert tasks, "{} empty task!".format(msg["id"])
  101. tasks = pd.DataFrame(tasks)
  102. return tasks
  103. def get_minio_binary(bucket, name):
  104. return MINIO.get(bucket, name)
  105. def build(row):
  106. if row["size"] > DOC_MAXIMUM_SIZE:
  107. set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
  108. (int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
  109. return []
  110. callback = partial(
  111. set_progress,
  112. row["id"],
  113. row["from_page"],
  114. row["to_page"])
  115. chunker = FACTORY[row["parser_id"].lower()]
  116. try:
  117. st = timer()
  118. bucket, name = File2DocumentService.get_minio_address(doc_id=row["doc_id"])
  119. binary = get_minio_binary(bucket, name)
  120. cron_logger.info(
  121. "From minio({}) {}/{}".format(timer()-st, row["location"], row["name"]))
  122. cks = chunker.chunk(row["name"], binary=binary, from_page=row["from_page"],
  123. to_page=row["to_page"], lang=row["language"], callback=callback,
  124. kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"])
  125. cron_logger.info(
  126. "Chunkking({}) {}/{}".format(timer()-st, row["location"], row["name"]))
  127. except TimeoutError as e:
  128. callback(-1, f"Internal server error: Fetch file timeout. Could you try it again.")
  129. cron_logger.error(
  130. "Chunkking {}/{}: Fetch file timeout.".format(row["location"], row["name"]))
  131. return
  132. except Exception as e:
  133. if re.search("(No such file|not found)", str(e)):
  134. callback(-1, "Can not find file <%s>" % row["name"])
  135. else:
  136. callback(-1, f"Internal server error: %s" %
  137. str(e).replace("'", ""))
  138. traceback.print_exc()
  139. cron_logger.error(
  140. "Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))
  141. return
  142. docs = []
  143. doc = {
  144. "doc_id": row["doc_id"],
  145. "kb_id": [str(row["kb_id"])]
  146. }
  147. el = 0
  148. for ck in cks:
  149. d = copy.deepcopy(doc)
  150. d.update(ck)
  151. md5 = hashlib.md5()
  152. md5.update((ck["content_with_weight"] +
  153. str(d["doc_id"])).encode("utf-8"))
  154. d["_id"] = md5.hexdigest()
  155. d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
  156. d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
  157. if not d.get("image"):
  158. docs.append(d)
  159. continue
  160. output_buffer = BytesIO()
  161. if isinstance(d["image"], bytes):
  162. output_buffer = BytesIO(d["image"])
  163. else:
  164. d["image"].save(output_buffer, format='JPEG')
  165. st = timer()
  166. MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
  167. el += timer() - st
  168. d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
  169. del d["image"]
  170. docs.append(d)
  171. cron_logger.info("MINIO PUT({}):{}".format(row["name"], el))
  172. return docs
  173. def init_kb(row):
  174. idxnm = search.index_name(row["tenant_id"])
  175. if ELASTICSEARCH.indexExist(idxnm):
  176. return
  177. return ELASTICSEARCH.createIdx(idxnm, json.load(
  178. open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))
  179. def embedding(docs, mdl, parser_config={}, callback=None):
  180. batch_size = 32
  181. tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [
  182. re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", d["content_with_weight"]) for d in docs]
  183. tk_count = 0
  184. if len(tts) == len(cnts):
  185. tts_ = np.array([])
  186. for i in range(0, len(tts), batch_size):
  187. vts, c = mdl.encode(tts[i: i + batch_size])
  188. if len(tts_) == 0:
  189. tts_ = vts
  190. else:
  191. tts_ = np.concatenate((tts_, vts), axis=0)
  192. tk_count += c
  193. callback(prog=0.6 + 0.1 * (i + 1) / len(tts), msg="")
  194. tts = tts_
  195. cnts_ = np.array([])
  196. for i in range(0, len(cnts), batch_size):
  197. vts, c = mdl.encode(cnts[i: i + batch_size])
  198. if len(cnts_) == 0:
  199. cnts_ = vts
  200. else:
  201. cnts_ = np.concatenate((cnts_, vts), axis=0)
  202. tk_count += c
  203. callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="")
  204. cnts = cnts_
  205. title_w = float(parser_config.get("filename_embd_weight", 0.1))
  206. vects = (title_w * tts + (1 - title_w) *
  207. cnts) if len(tts) == len(cnts) else cnts
  208. assert len(vects) == len(docs)
  209. for i, d in enumerate(docs):
  210. v = vects[i].tolist()
  211. d["q_%d_vec" % len(v)] = v
  212. return tk_count
  213. def main():
  214. rows = collect()
  215. if len(rows) == 0:
  216. return
  217. for _, r in rows.iterrows():
  218. callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
  219. try:
  220. embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING, llm_name=r["embd_id"], lang=r["language"])
  221. except Exception as e:
  222. traceback.print_stack(e)
  223. callback(prog=-1, msg=str(e))
  224. continue
  225. st = timer()
  226. cks = build(r)
  227. cron_logger.info("Build chunks({}): {}".format(r["name"], timer()-st))
  228. if cks is None:
  229. continue
  230. if not cks:
  231. callback(1., "No chunk! Done!")
  232. continue
  233. # TODO: exception handler
  234. ## set_progress(r["did"], -1, "ERROR: ")
  235. callback(
  236. msg="Finished slicing files(%d). Start to embedding the content." %
  237. len(cks))
  238. st = timer()
  239. try:
  240. tk_count = embedding(cks, embd_mdl, r["parser_config"], callback)
  241. except Exception as e:
  242. callback(-1, "Embedding error:{}".format(str(e)))
  243. cron_logger.error(str(e))
  244. tk_count = 0
  245. cron_logger.info("Embedding elapsed({}): {}".format(r["name"], timer()-st))
  246. callback(msg="Finished embedding({})! Start to build index!".format(timer()-st))
  247. init_kb(r)
  248. chunk_count = len(set([c["_id"] for c in cks]))
  249. st = timer()
  250. es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"]))
  251. cron_logger.info("Indexing elapsed({}): {}".format(r["name"], timer()-st))
  252. if es_r:
  253. callback(-1, "Index failure!")
  254. ELASTICSEARCH.deleteByQuery(
  255. Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
  256. cron_logger.error(str(es_r))
  257. else:
  258. if TaskService.do_cancel(r["id"]):
  259. ELASTICSEARCH.deleteByQuery(
  260. Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
  261. continue
  262. callback(1., "Done!")
  263. DocumentService.increment_chunk_num(
  264. r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
  265. cron_logger.info(
  266. "Chunk doc({}), token({}), chunks({}), elapsed:{}".format(
  267. r["id"], tk_count, len(cks), timer()-st))
  268. if __name__ == "__main__":
  269. peewee_logger = logging.getLogger('peewee')
  270. peewee_logger.propagate = False
  271. peewee_logger.addHandler(database_logger.handlers[0])
  272. peewee_logger.setLevel(database_logger.level)
  273. while True:
  274. main()