您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

embedding_model.py 32KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import logging
  17. import re
  18. import threading
  19. from urllib.parse import urljoin
  20. import requests
  21. from requests.exceptions import JSONDecodeError
  22. from huggingface_hub import snapshot_download
  23. from zhipuai import ZhipuAI
  24. import os
  25. from abc import ABC
  26. from ollama import Client
  27. import dashscope
  28. from openai import OpenAI
  29. import numpy as np
  30. import asyncio
  31. from api import settings
  32. from api.utils.file_utils import get_home_cache_dir
  33. from rag.utils import num_tokens_from_string, truncate
  34. import google.generativeai as genai
  35. import json
  36. class Base(ABC):
  37. def __init__(self, key, model_name):
  38. pass
  39. def encode(self, texts: list):
  40. raise NotImplementedError("Please implement encode method!")
  41. def encode_queries(self, text: str):
  42. raise NotImplementedError("Please implement encode method!")
  43. def total_token_count(self, resp):
  44. try:
  45. return resp.usage.total_tokens
  46. except Exception:
  47. pass
  48. try:
  49. return resp["usage"]["total_tokens"]
  50. except Exception:
  51. pass
  52. return 0
  53. class DefaultEmbedding(Base):
  54. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  55. _model = None
  56. _model_name = ""
  57. _model_lock = threading.Lock()
  58. def __init__(self, key, model_name, **kwargs):
  59. """
  60. If you have trouble downloading HuggingFace models, -_^ this might help!!
  61. For Linux:
  62. export HF_ENDPOINT=https://hf-mirror.com
  63. For Windows:
  64. Good luck
  65. ^_-
  66. """
  67. if not settings.LIGHTEN:
  68. with DefaultEmbedding._model_lock:
  69. from FlagEmbedding import FlagModel
  70. import torch
  71. if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
  72. try:
  73. DefaultEmbedding._model = FlagModel(os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
  74. query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
  75. use_fp16=torch.cuda.is_available())
  76. DefaultEmbedding._model_name = model_name
  77. except Exception:
  78. model_dir = snapshot_download(repo_id="BAAI/bge-large-zh-v1.5",
  79. local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
  80. local_dir_use_symlinks=False)
  81. DefaultEmbedding._model = FlagModel(model_dir,
  82. query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
  83. use_fp16=torch.cuda.is_available())
  84. self._model = DefaultEmbedding._model
  85. self._model_name = DefaultEmbedding._model_name
  86. def encode(self, texts: list):
  87. batch_size = 16
  88. texts = [truncate(t, 2048) for t in texts]
  89. token_count = 0
  90. for t in texts:
  91. token_count += num_tokens_from_string(t)
  92. ress = []
  93. for i in range(0, len(texts), batch_size):
  94. ress.extend(self._model.encode(texts[i:i + batch_size]).tolist())
  95. return np.array(ress), token_count
  96. def encode_queries(self, text: str):
  97. token_count = num_tokens_from_string(text)
  98. return self._model.encode_queries([text]).tolist()[0], token_count
  99. class OpenAIEmbed(Base):
  100. def __init__(self, key, model_name="text-embedding-ada-002",
  101. base_url="https://api.openai.com/v1"):
  102. if not base_url:
  103. base_url = "https://api.openai.com/v1"
  104. self.client = OpenAI(api_key=key, base_url=base_url)
  105. self.model_name = model_name
  106. def encode(self, texts: list):
  107. # OpenAI requires batch size <=16
  108. batch_size = 16
  109. texts = [truncate(t, 8191) for t in texts]
  110. ress = []
  111. total_tokens = 0
  112. for i in range(0, len(texts), batch_size):
  113. res = self.client.embeddings.create(input=texts[i:i + batch_size],
  114. model=self.model_name)
  115. ress.extend([d.embedding for d in res.data])
  116. total_tokens += self.total_token_count(res)
  117. return np.array(ress), total_tokens
  118. def encode_queries(self, text):
  119. res = self.client.embeddings.create(input=[truncate(text, 8191)],
  120. model=self.model_name)
  121. return np.array(res.data[0].embedding), self.total_token_count(res)
  122. class LocalAIEmbed(Base):
  123. def __init__(self, key, model_name, base_url):
  124. if not base_url:
  125. raise ValueError("Local embedding model url cannot be None")
  126. base_url = urljoin(base_url, "v1")
  127. self.client = OpenAI(api_key="empty", base_url=base_url)
  128. self.model_name = model_name.split("___")[0]
  129. def encode(self, texts: list):
  130. batch_size = 16
  131. ress = []
  132. for i in range(0, len(texts), batch_size):
  133. res = self.client.embeddings.create(input=texts[i:i + batch_size], model=self.model_name)
  134. ress.extend([d.embedding for d in res.data])
  135. # local embedding for LmStudio donot count tokens
  136. return np.array(ress), 1024
  137. def encode_queries(self, text):
  138. embds, cnt = self.encode([text])
  139. return np.array(embds[0]), cnt
  140. class AzureEmbed(OpenAIEmbed):
  141. def __init__(self, key, model_name, **kwargs):
  142. from openai.lib.azure import AzureOpenAI
  143. api_key = json.loads(key).get('api_key', '')
  144. api_version = json.loads(key).get('api_version', '2024-02-01')
  145. self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
  146. self.model_name = model_name
  147. class BaiChuanEmbed(OpenAIEmbed):
  148. def __init__(self, key,
  149. model_name='Baichuan-Text-Embedding',
  150. base_url='https://api.baichuan-ai.com/v1'):
  151. if not base_url:
  152. base_url = "https://api.baichuan-ai.com/v1"
  153. super().__init__(key, model_name, base_url)
  154. class QWenEmbed(Base):
  155. def __init__(self, key, model_name="text_embedding_v2", **kwargs):
  156. self.key = key
  157. self.model_name = model_name
  158. def encode(self, texts: list):
  159. import dashscope
  160. batch_size = 4
  161. try:
  162. res = []
  163. token_count = 0
  164. texts = [truncate(t, 2048) for t in texts]
  165. for i in range(0, len(texts), batch_size):
  166. resp = dashscope.TextEmbedding.call(
  167. model=self.model_name,
  168. input=texts[i:i + batch_size],
  169. api_key=self.key,
  170. text_type="document"
  171. )
  172. embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
  173. for e in resp["output"]["embeddings"]:
  174. embds[e["text_index"]] = e["embedding"]
  175. res.extend(embds)
  176. token_count += self.total_token_count(resp)
  177. return np.array(res), token_count
  178. except Exception as e:
  179. raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
  180. return np.array([]), 0
  181. def encode_queries(self, text):
  182. try:
  183. resp = dashscope.TextEmbedding.call(
  184. model=self.model_name,
  185. input=text[:2048],
  186. api_key=self.key,
  187. text_type="query"
  188. )
  189. return np.array(resp["output"]["embeddings"][0]
  190. ["embedding"]), self.total_token_count(resp)
  191. except Exception:
  192. raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
  193. return np.array([]), 0
  194. class ZhipuEmbed(Base):
  195. def __init__(self, key, model_name="embedding-2", **kwargs):
  196. self.client = ZhipuAI(api_key=key)
  197. self.model_name = model_name
  198. def encode(self, texts: list):
  199. arr = []
  200. tks_num = 0
  201. MAX_LEN = -1
  202. if self.model_name.lower() == "embedding-2":
  203. MAX_LEN = 512
  204. if self.model_name.lower() == "embedding-3":
  205. MAX_LEN = 3072
  206. if MAX_LEN > 0:
  207. texts = [truncate(t, MAX_LEN) for t in texts]
  208. for txt in texts:
  209. res = self.client.embeddings.create(input=txt,
  210. model=self.model_name)
  211. arr.append(res.data[0].embedding)
  212. tks_num += self.total_token_count(res)
  213. return np.array(arr), tks_num
  214. def encode_queries(self, text):
  215. res = self.client.embeddings.create(input=text,
  216. model=self.model_name)
  217. return np.array(res.data[0].embedding), self.total_token_count(res)
  218. class OllamaEmbed(Base):
  219. def __init__(self, key, model_name, **kwargs):
  220. self.client = Client(host=kwargs["base_url"]) if not key or key == "x" else \
  221. Client(host=kwargs["base_url"], headers={"Authorization": f"Bear {key}"})
  222. self.model_name = model_name
  223. def encode(self, texts: list):
  224. arr = []
  225. tks_num = 0
  226. for txt in texts:
  227. res = self.client.embeddings(prompt=txt,
  228. model=self.model_name,
  229. options={"use_mmap": True})
  230. arr.append(res["embedding"])
  231. tks_num += 128
  232. return np.array(arr), tks_num
  233. def encode_queries(self, text):
  234. res = self.client.embeddings(prompt=text,
  235. model=self.model_name,
  236. options={"use_mmap": True})
  237. return np.array(res["embedding"]), 128
  238. class FastEmbed(DefaultEmbedding):
  239. def __init__(
  240. self,
  241. key: str | None = None,
  242. model_name: str = "BAAI/bge-small-en-v1.5",
  243. cache_dir: str | None = None,
  244. threads: int | None = None,
  245. **kwargs,
  246. ):
  247. if not settings.LIGHTEN:
  248. with FastEmbed._model_lock:
  249. from fastembed import TextEmbedding
  250. if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
  251. try:
  252. DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
  253. DefaultEmbedding._model_name = model_name
  254. except Exception:
  255. cache_dir = snapshot_download(repo_id="BAAI/bge-small-en-v1.5",
  256. local_dir=os.path.join(get_home_cache_dir(),
  257. re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
  258. local_dir_use_symlinks=False)
  259. DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
  260. self._model = DefaultEmbedding._model
  261. self._model_name = model_name
  262. def encode(self, texts: list):
  263. # Using the internal tokenizer to encode the texts and get the total
  264. # number of tokens
  265. encodings = self._model.model.tokenizer.encode_batch(texts)
  266. total_tokens = sum(len(e) for e in encodings)
  267. embeddings = [e.tolist() for e in self._model.embed(texts, batch_size=16)]
  268. return np.array(embeddings), total_tokens
  269. def encode_queries(self, text: str):
  270. # Using the internal tokenizer to encode the texts and get the total
  271. # number of tokens
  272. encoding = self._model.model.tokenizer.encode(text)
  273. embedding = next(self._model.query_embed(text)).tolist()
  274. return np.array(embedding), len(encoding.ids)
  275. class XinferenceEmbed(Base):
  276. def __init__(self, key, model_name="", base_url=""):
  277. base_url = urljoin(base_url, "v1")
  278. self.client = OpenAI(api_key=key, base_url=base_url)
  279. self.model_name = model_name
  280. def encode(self, texts: list):
  281. batch_size = 16
  282. ress = []
  283. total_tokens = 0
  284. for i in range(0, len(texts), batch_size):
  285. res = self.client.embeddings.create(input=texts[i:i + batch_size], model=self.model_name)
  286. ress.extend([d.embedding for d in res.data])
  287. total_tokens += self.total_token_count(res)
  288. return np.array(ress), total_tokens
  289. def encode_queries(self, text):
  290. res = self.client.embeddings.create(input=[text],
  291. model=self.model_name)
  292. return np.array(res.data[0].embedding), self.total_token_count(res)
  293. class YoudaoEmbed(Base):
  294. _client = None
  295. def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
  296. if not settings.LIGHTEN and not YoudaoEmbed._client:
  297. from BCEmbedding import EmbeddingModel as qanthing
  298. try:
  299. logging.info("LOADING BCE...")
  300. YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(
  301. get_home_cache_dir(),
  302. "bce-embedding-base_v1"))
  303. except Exception:
  304. YoudaoEmbed._client = qanthing(
  305. model_name_or_path=model_name.replace(
  306. "maidalun1020", "InfiniFlow"))
  307. def encode(self, texts: list):
  308. batch_size = 10
  309. res = []
  310. token_count = 0
  311. for t in texts:
  312. token_count += num_tokens_from_string(t)
  313. for i in range(0, len(texts), batch_size):
  314. embds = YoudaoEmbed._client.encode(texts[i:i + batch_size])
  315. res.extend(embds)
  316. return np.array(res), token_count
  317. def encode_queries(self, text):
  318. embds = YoudaoEmbed._client.encode([text])
  319. return np.array(embds[0]), num_tokens_from_string(text)
  320. class JinaEmbed(Base):
  321. def __init__(self, key, model_name="jina-embeddings-v3",
  322. base_url="https://api.jina.ai/v1/embeddings"):
  323. self.base_url = "https://api.jina.ai/v1/embeddings"
  324. self.headers = {
  325. "Content-Type": "application/json",
  326. "Authorization": f"Bearer {key}"
  327. }
  328. self.model_name = model_name
  329. def encode(self, texts: list):
  330. texts = [truncate(t, 8196) for t in texts]
  331. batch_size = 16
  332. ress = []
  333. token_count = 0
  334. for i in range(0, len(texts), batch_size):
  335. data = {
  336. "model": self.model_name,
  337. "input": texts[i:i + batch_size],
  338. 'encoding_type': 'float'
  339. }
  340. response = requests.post(self.base_url, headers=self.headers, json=data)
  341. try:
  342. res = response.json()
  343. except JSONDecodeError as e:
  344. logging.error(f"JSON decode error: {e}\nResponse content: {response.text[:2000]}")
  345. raise
  346. ress.extend([d["embedding"] for d in res["data"]])
  347. token_count += self.total_token_count(res)
  348. return np.array(ress), token_count
  349. def encode_queries(self, text):
  350. embds, cnt = self.encode([text])
  351. return np.array(embds[0]), cnt
  352. class InfinityEmbed(Base):
  353. _model = None
  354. def __init__(
  355. self,
  356. model_names: list[str] = ("BAAI/bge-small-en-v1.5",),
  357. engine_kwargs: dict = {},
  358. key = None,
  359. ):
  360. from infinity_emb import EngineArgs
  361. from infinity_emb.engine import AsyncEngineArray
  362. self._default_model = model_names[0]
  363. self.engine_array = AsyncEngineArray.from_args([EngineArgs(model_name_or_path = model_name, **engine_kwargs) for model_name in model_names])
  364. async def _embed(self, sentences: list[str], model_name: str = ""):
  365. if not model_name:
  366. model_name = self._default_model
  367. engine = self.engine_array[model_name]
  368. was_already_running = engine.is_running
  369. if not was_already_running:
  370. await engine.astart()
  371. embeddings, usage = await engine.embed(sentences=sentences)
  372. if not was_already_running:
  373. await engine.astop()
  374. return embeddings, usage
  375. def encode(self, texts: list[str], model_name: str = "") -> tuple[np.ndarray, int]:
  376. # Using the internal tokenizer to encode the texts and get the total
  377. # number of tokens
  378. embeddings, usage = asyncio.run(self._embed(texts, model_name))
  379. return np.array(embeddings), usage
  380. def encode_queries(self, text: str) -> tuple[np.ndarray, int]:
  381. # Using the internal tokenizer to encode the texts and get the total
  382. # number of tokens
  383. return self.encode([text])
  384. class MistralEmbed(Base):
  385. def __init__(self, key, model_name="mistral-embed",
  386. base_url=None):
  387. from mistralai.client import MistralClient
  388. self.client = MistralClient(api_key=key)
  389. self.model_name = model_name
  390. def encode(self, texts: list):
  391. texts = [truncate(t, 8196) for t in texts]
  392. batch_size = 16
  393. ress = []
  394. token_count = 0
  395. for i in range(0, len(texts), batch_size):
  396. res = self.client.embeddings(input=texts[i:i + batch_size],
  397. model=self.model_name)
  398. ress.extend([d.embedding for d in res.data])
  399. token_count += self.total_token_count(res)
  400. return np.array(ress), token_count
  401. def encode_queries(self, text):
  402. res = self.client.embeddings(input=[truncate(text, 8196)],
  403. model=self.model_name)
  404. return np.array(res.data[0].embedding), self.total_token_count(res)
  405. class BedrockEmbed(Base):
  406. def __init__(self, key, model_name,
  407. **kwargs):
  408. import boto3
  409. self.bedrock_ak = json.loads(key).get('bedrock_ak', '')
  410. self.bedrock_sk = json.loads(key).get('bedrock_sk', '')
  411. self.bedrock_region = json.loads(key).get('bedrock_region', '')
  412. self.model_name = model_name
  413. if self.bedrock_ak == '' or self.bedrock_sk == '' or self.bedrock_region == '':
  414. # Try to create a client using the default credentials (AWS_PROFILE, AWS_DEFAULT_REGION, etc.)
  415. self.client = boto3.client('bedrock-runtime')
  416. else:
  417. self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
  418. aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
  419. def encode(self, texts: list):
  420. texts = [truncate(t, 8196) for t in texts]
  421. embeddings = []
  422. token_count = 0
  423. for text in texts:
  424. if self.model_name.split('.')[0] == 'amazon':
  425. body = {"inputText": text}
  426. elif self.model_name.split('.')[0] == 'cohere':
  427. body = {"texts": [text], "input_type": 'search_document'}
  428. response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
  429. model_response = json.loads(response["body"].read())
  430. embeddings.extend([model_response["embedding"]])
  431. token_count += num_tokens_from_string(text)
  432. return np.array(embeddings), token_count
  433. def encode_queries(self, text):
  434. embeddings = []
  435. token_count = num_tokens_from_string(text)
  436. if self.model_name.split('.')[0] == 'amazon':
  437. body = {"inputText": truncate(text, 8196)}
  438. elif self.model_name.split('.')[0] == 'cohere':
  439. body = {"texts": [truncate(text, 8196)], "input_type": 'search_query'}
  440. response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
  441. model_response = json.loads(response["body"].read())
  442. embeddings.extend(model_response["embedding"])
  443. return np.array(embeddings), token_count
  444. class GeminiEmbed(Base):
  445. def __init__(self, key, model_name='models/text-embedding-004',
  446. **kwargs):
  447. self.key = key
  448. self.model_name = 'models/' + model_name
  449. def encode(self, texts: list):
  450. texts = [truncate(t, 2048) for t in texts]
  451. token_count = sum(num_tokens_from_string(text) for text in texts)
  452. genai.configure(api_key=self.key)
  453. batch_size = 16
  454. ress = []
  455. for i in range(0, len(texts), batch_size):
  456. result = genai.embed_content(
  457. model=self.model_name,
  458. content=texts[i: i + batch_size],
  459. task_type="retrieval_document",
  460. title="Embedding of single string")
  461. ress.extend(result['embedding'])
  462. return np.array(ress),token_count
  463. def encode_queries(self, text):
  464. genai.configure(api_key=self.key)
  465. result = genai.embed_content(
  466. model=self.model_name,
  467. content=truncate(text,2048),
  468. task_type="retrieval_document",
  469. title="Embedding of single string")
  470. token_count = num_tokens_from_string(text)
  471. return np.array(result['embedding']), token_count
  472. class NvidiaEmbed(Base):
  473. def __init__(
  474. self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings"
  475. ):
  476. if not base_url:
  477. base_url = "https://integrate.api.nvidia.com/v1/embeddings"
  478. self.api_key = key
  479. self.base_url = base_url
  480. self.headers = {
  481. "accept": "application/json",
  482. "Content-Type": "application/json",
  483. "authorization": f"Bearer {self.api_key}",
  484. }
  485. self.model_name = model_name
  486. if model_name == "nvidia/embed-qa-4":
  487. self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings"
  488. self.model_name = "NV-Embed-QA"
  489. if model_name == "snowflake/arctic-embed-l":
  490. self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings"
  491. def encode(self, texts: list):
  492. batch_size = 16
  493. ress = []
  494. token_count = 0
  495. for i in range(0, len(texts), batch_size):
  496. payload = {
  497. "input": texts[i : i + batch_size],
  498. "input_type": "query",
  499. "model": self.model_name,
  500. "encoding_format": "float",
  501. "truncate": "END",
  502. }
  503. response = requests.post(self.base_url, headers=self.headers, json=payload)
  504. try:
  505. res = response.json()
  506. except JSONDecodeError as e:
  507. logging.error(f"JSON decode error: {e}\nResponse content: {response.text[:2000]}")
  508. raise
  509. ress.extend([d["embedding"] for d in res["data"]])
  510. token_count += self.total_token_count(res)
  511. return np.array(ress), token_count
  512. def encode_queries(self, text):
  513. embds, cnt = self.encode([text])
  514. return np.array(embds[0]), cnt
  515. class LmStudioEmbed(LocalAIEmbed):
  516. def __init__(self, key, model_name, base_url):
  517. if not base_url:
  518. raise ValueError("Local llm url cannot be None")
  519. base_url = urljoin(base_url, "v1")
  520. self.client = OpenAI(api_key="lm-studio", base_url=base_url)
  521. self.model_name = model_name
  522. class OpenAI_APIEmbed(OpenAIEmbed):
  523. def __init__(self, key, model_name, base_url):
  524. if not base_url:
  525. raise ValueError("url cannot be None")
  526. base_url = urljoin(base_url, "v1")
  527. self.client = OpenAI(api_key=key, base_url=base_url)
  528. self.model_name = model_name.split("___")[0]
  529. class CoHereEmbed(Base):
  530. def __init__(self, key, model_name, base_url=None):
  531. from cohere import Client
  532. self.client = Client(api_key=key)
  533. self.model_name = model_name
  534. def encode(self, texts: list):
  535. batch_size = 16
  536. ress = []
  537. token_count = 0
  538. for i in range(0, len(texts), batch_size):
  539. res = self.client.embed(
  540. texts=texts[i : i + batch_size],
  541. model=self.model_name,
  542. input_type="search_document",
  543. embedding_types=["float"],
  544. )
  545. ress.extend([d for d in res.embeddings.float])
  546. token_count += res.meta.billed_units.input_tokens
  547. return np.array(ress), token_count
  548. def encode_queries(self, text):
  549. res = self.client.embed(
  550. texts=[text],
  551. model=self.model_name,
  552. input_type="search_query",
  553. embedding_types=["float"],
  554. )
  555. return np.array(res.embeddings.float[0]), int(
  556. res.meta.billed_units.input_tokens
  557. )
  558. class TogetherAIEmbed(OpenAIEmbed):
  559. def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
  560. if not base_url:
  561. base_url = "https://api.together.xyz/v1"
  562. super().__init__(key, model_name, base_url=base_url)
  563. class PerfXCloudEmbed(OpenAIEmbed):
  564. def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
  565. if not base_url:
  566. base_url = "https://cloud.perfxlab.cn/v1"
  567. super().__init__(key, model_name, base_url)
  568. class UpstageEmbed(OpenAIEmbed):
  569. def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
  570. if not base_url:
  571. base_url = "https://api.upstage.ai/v1/solar"
  572. super().__init__(key, model_name, base_url)
  573. class SILICONFLOWEmbed(Base):
  574. def __init__(
  575. self, key, model_name, base_url="https://api.siliconflow.cn/v1/embeddings"
  576. ):
  577. if not base_url:
  578. base_url = "https://api.siliconflow.cn/v1/embeddings"
  579. self.headers = {
  580. "accept": "application/json",
  581. "content-type": "application/json",
  582. "authorization": f"Bearer {key}",
  583. }
  584. self.base_url = base_url
  585. self.model_name = model_name
  586. def encode(self, texts: list):
  587. batch_size = 16
  588. ress = []
  589. token_count = 0
  590. for i in range(0, len(texts), batch_size):
  591. texts_batch = texts[i : i + batch_size]
  592. payload = {
  593. "model": self.model_name,
  594. "input": texts_batch,
  595. "encoding_format": "float",
  596. }
  597. response = requests.post(self.base_url, json=payload, headers=self.headers)
  598. try:
  599. res = response.json()
  600. except JSONDecodeError as e:
  601. logging.error(f"JSON decode error: {e}\nResponse content: {response.text[:2000]}")
  602. raise
  603. if "data" not in res or not isinstance(res["data"], list) or len(res["data"]) != len(texts_batch):
  604. raise ValueError(f"SILICONFLOWEmbed.encode got invalid response from {self.base_url}")
  605. ress.extend([d["embedding"] for d in res["data"]])
  606. token_count += self.total_token_count(res)
  607. return np.array(ress), token_count
  608. def encode_queries(self, text):
  609. payload = {
  610. "model": self.model_name,
  611. "input": text,
  612. "encoding_format": "float",
  613. }
  614. response = requests.post(self.base_url, json=payload, headers=self.headers).json()
  615. try:
  616. res = response.json()
  617. except JSONDecodeError as e:
  618. logging.error(f"JSON decode error: {e}\nResponse content: {response.text[:2000]}")
  619. raise
  620. if "data" not in res or not isinstance(res["data"], list) or len(res["data"])!= 1:
  621. raise ValueError(f"SILICONFLOWEmbed.encode_queries got invalid response from {self.base_url}")
  622. return np.array(res["data"][0]["embedding"]), self.total_token_count(res)
  623. class ReplicateEmbed(Base):
  624. def __init__(self, key, model_name, base_url=None):
  625. from replicate.client import Client
  626. self.model_name = model_name
  627. self.client = Client(api_token=key)
  628. def encode(self, texts: list):
  629. batch_size = 16
  630. token_count = sum([num_tokens_from_string(text) for text in texts])
  631. ress = []
  632. for i in range(0, len(texts), batch_size):
  633. res = self.client.run(self.model_name, input={"texts": texts[i : i + batch_size]})
  634. ress.extend(res)
  635. return np.array(ress), token_count
  636. def encode_queries(self, text):
  637. res = self.client.embed(self.model_name, input={"texts": [text]})
  638. return np.array(res), num_tokens_from_string(text)
  639. class BaiduYiyanEmbed(Base):
  640. def __init__(self, key, model_name, base_url=None):
  641. import qianfan
  642. key = json.loads(key)
  643. ak = key.get("yiyan_ak", "")
  644. sk = key.get("yiyan_sk", "")
  645. self.client = qianfan.Embedding(ak=ak, sk=sk)
  646. self.model_name = model_name
  647. def encode(self, texts: list, batch_size=16):
  648. res = self.client.do(model=self.model_name, texts=texts).body
  649. return (
  650. np.array([r["embedding"] for r in res["data"]]),
  651. self.total_token_count(res),
  652. )
  653. def encode_queries(self, text):
  654. res = self.client.do(model=self.model_name, texts=[text]).body
  655. return (
  656. np.array([r["embedding"] for r in res["data"]]),
  657. self.total_token_count(res),
  658. )
  659. class VoyageEmbed(Base):
  660. def __init__(self, key, model_name, base_url=None):
  661. import voyageai
  662. self.client = voyageai.Client(api_key=key)
  663. self.model_name = model_name
  664. def encode(self, texts: list):
  665. batch_size = 16
  666. ress = []
  667. token_count = 0
  668. for i in range(0, len(texts), batch_size):
  669. res = self.client.embed(
  670. texts=texts[i : i + batch_size], model=self.model_name, input_type="document"
  671. )
  672. ress.extend(res.embeddings)
  673. token_count += res.total_tokens
  674. return np.array(ress), token_count
  675. def encode_queries(self, text):
  676. res = self.client.embed(
  677. texts=text, model=self.model_name, input_type="query"
  678. )
  679. return np.array(res.embeddings)[0], res.total_tokens
  680. class HuggingFaceEmbed(Base):
  681. def __init__(self, key, model_name, base_url=None):
  682. if not model_name:
  683. raise ValueError("Model name cannot be None")
  684. self.key = key
  685. self.model_name = model_name.split("___")[0]
  686. self.base_url = base_url or "http://127.0.0.1:8080"
  687. def encode(self, texts: list):
  688. embeddings = []
  689. for text in texts:
  690. response = requests.post(
  691. f"{self.base_url}/embed",
  692. json={"inputs": text},
  693. headers={'Content-Type': 'application/json'}
  694. )
  695. if response.status_code == 200:
  696. embedding = response.json()
  697. embeddings.append(embedding[0])
  698. else:
  699. raise Exception(f"Error: {response.status_code} - {response.text}")
  700. return np.array(embeddings), sum([num_tokens_from_string(text) for text in texts])
  701. def encode_queries(self, text):
  702. response = requests.post(
  703. f"{self.base_url}/embed",
  704. json={"inputs": text},
  705. headers={'Content-Type': 'application/json'}
  706. )
  707. if response.status_code == 200:
  708. embedding = response.json()
  709. return np.array(embedding[0]), num_tokens_from_string(text)
  710. else:
  711. raise Exception(f"Error: {response.status_code} - {response.text}")
  712. class VolcEngineEmbed(OpenAIEmbed):
  713. def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3"):
  714. if not base_url:
  715. base_url = "https://ark.cn-beijing.volces.com/api/v3"
  716. ark_api_key = json.loads(key).get('ark_api_key', '')
  717. model_name = json.loads(key).get('ep_id', '') + json.loads(key).get('endpoint_id', '')
  718. super().__init__(ark_api_key,model_name,base_url)
  719. class GPUStackEmbed(OpenAIEmbed):
  720. def __init__(self, key, model_name, base_url):
  721. if not base_url:
  722. raise ValueError("url cannot be None")
  723. base_url = urljoin(base_url, "v1")
  724. self.client = OpenAI(api_key=key, base_url=base_url)
  725. self.model_name = model_name