- import re
- import json
- import time
- import os
- from typing import List, Dict
-
- import elasticsearch
- import copy
- from elasticsearch import Elasticsearch
- from elasticsearch_dsl import UpdateByQuery, Q, Search, Index
- from elastic_transport import ConnectionTimeout
- from api.utils.log_utils import logger
- from rag import settings
- from rag.utils import singleton
- from api.utils.file_utils import get_project_base_directory
- import polars as pl
- from rag.utils.doc_store_conn import DocStoreConnection, MatchExpr, OrderByExpr, MatchTextExpr, MatchDenseExpr, FusionExpr
- from rag.nlp import is_english, rag_tokenizer
-
- logger.info("Elasticsearch sdk version: "+str(elasticsearch.__version__))
-
-
- @singleton
- class ESConnection(DocStoreConnection):
- def __init__(self):
- self.info = {}
- for _ in range(10):
- try:
- self.es = Elasticsearch(
- settings.ES["hosts"].split(","),
- basic_auth=(settings.ES["username"], settings.ES["password"]) if "username" in settings.ES and "password" in settings.ES else None,
- verify_certs=False,
- timeout=600
- )
- if self.es:
- self.info = self.es.info()
- logger.info("Connect to es.")
- break
- except Exception:
- logger.exception("Fail to connect to es")
- time.sleep(1)
- if not self.es.ping():
- raise Exception("Can't connect to ES cluster")
- v = self.info.get("version", {"number": "5.6"})
- v = v["number"].split(".")[0]
- if int(v) < 8:
- raise Exception(f"ES version must be greater than or equal to 8, current version: {v}")
- fp_mapping = os.path.join(get_project_base_directory(), "conf", "mapping.json")
- if not os.path.exists(fp_mapping):
- raise Exception(f"Mapping file not found at {fp_mapping}")
- self.mapping = json.load(open(fp_mapping, "r"))
-
- """
- Database operations
- """
- def dbType(self) -> str:
- return "elasticsearch"
-
- def health(self) -> dict:
- return dict(self.es.cluster.health()) + {"type": "elasticsearch"}
-
- """
- Table operations
- """
- def createIdx(self, indexName: str, knowledgebaseId: str, vectorSize: int):
- if self.indexExist(indexName, knowledgebaseId):
- return True
- try:
- from elasticsearch.client import IndicesClient
- return IndicesClient(self.es).create(index=indexName,
- settings=self.mapping["settings"],
- mappings=self.mapping["mappings"])
- except Exception:
- logger.exception("ES create index error %s" % (indexName))
-
- def deleteIdx(self, indexName: str, knowledgebaseId: str):
- try:
- return self.es.indices.delete(indexName, allow_no_indices=True)
- except Exception:
- logger.exception("ES delete index error %s" % (indexName))
-
- def indexExist(self, indexName: str, knowledgebaseId: str) -> bool:
- s = Index(indexName, self.es)
- for i in range(3):
- try:
- return s.exists()
- except Exception as e:
- logger.exception("ES indexExist")
- if str(e).find("Timeout") > 0 or str(e).find("Conflict") > 0:
- continue
- return False
-
- """
- CRUD operations
- """
- def search(self, selectFields: list[str], highlightFields: list[str], condition: dict, matchExprs: list[MatchExpr], orderBy: OrderByExpr, offset: int, limit: int, indexNames: str|list[str], knowledgebaseIds: list[str]) -> list[dict] | pl.DataFrame:
- """
- Refers to https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
- """
- if isinstance(indexNames, str):
- indexNames = indexNames.split(",")
- assert isinstance(indexNames, list) and len(indexNames) > 0
- assert "_id" not in condition
- s = Search()
- bqry = None
- vector_similarity_weight = 0.5
- for m in matchExprs:
- if isinstance(m, FusionExpr) and m.method=="weighted_sum" and "weights" in m.fusion_params:
- assert len(matchExprs)==3 and isinstance(matchExprs[0], MatchTextExpr) and isinstance(matchExprs[1], MatchDenseExpr) and isinstance(matchExprs[2], FusionExpr)
- weights = m.fusion_params["weights"]
- vector_similarity_weight = float(weights.split(",")[1])
- for m in matchExprs:
- if isinstance(m, MatchTextExpr):
- minimum_should_match = "0%"
- if "minimum_should_match" in m.extra_options:
- minimum_should_match = str(int(m.extra_options["minimum_should_match"] * 100)) + "%"
- bqry = Q("bool",
- must=Q("query_string", fields=m.fields,
- type="best_fields", query=m.matching_text,
- minimum_should_match = minimum_should_match,
- boost=1),
- boost = 1.0 - vector_similarity_weight,
- )
- if condition:
- for k, v in condition.items():
- if not isinstance(k, str) or not v:
- continue
- if isinstance(v, list):
- bqry.filter.append(Q("terms", **{k: v}))
- elif isinstance(v, str) or isinstance(v, int):
- bqry.filter.append(Q("term", **{k: v}))
- else:
- raise Exception(f"Condition `{str(k)}={str(v)}` value type is {str(type(v))}, expected to be int, str or list.")
- elif isinstance(m, MatchDenseExpr):
- assert(bqry is not None)
- similarity = 0.0
- if "similarity" in m.extra_options:
- similarity = m.extra_options["similarity"]
- s = s.knn(m.vector_column_name,
- m.topn,
- m.topn * 2,
- query_vector = list(m.embedding_data),
- filter = bqry.to_dict(),
- similarity = similarity,
- )
- if matchExprs:
- s.query = bqry
- for field in highlightFields:
- s = s.highlight(field)
-
- if orderBy:
- orders = list()
- for field, order in orderBy.fields:
- order = "asc" if order == 0 else "desc"
- orders.append({field: {"order": order, "unmapped_type": "float",
- "mode": "avg", "numeric_type": "double"}})
- s = s.sort(*orders)
-
- if limit > 0:
- s = s[offset:limit]
- q = s.to_dict()
- # logger.info("ESConnection.search [Q]: " + json.dumps(q))
-
- for i in range(3):
- try:
- res = self.es.search(index=indexNames,
- body=q,
- timeout="600s",
- # search_type="dfs_query_then_fetch",
- track_total_hits=True,
- _source=True)
- if str(res.get("timed_out", "")).lower() == "true":
- raise Exception("Es Timeout.")
- logger.info("ESConnection.search res: " + str(res))
- return res
- except Exception as e:
- logger.exception("ES search [Q]: " + str(q))
- if str(e).find("Timeout") > 0:
- continue
- raise e
- logger.error("ES search timeout for 3 times!")
- raise Exception("ES search timeout.")
-
- def get(self, chunkId: str, indexName: str, knowledgebaseIds: list[str]) -> dict | None:
- for i in range(3):
- try:
- res = self.es.get(index=(indexName),
- id=chunkId, source=True,)
- if str(res.get("timed_out", "")).lower() == "true":
- raise Exception("Es Timeout.")
- if not res.get("found"):
- return None
- chunk = res["_source"]
- chunk["id"] = chunkId
- return chunk
- except Exception as e:
- logger.exception(f"ES get({chunkId}) got exception")
- if str(e).find("Timeout") > 0:
- continue
- raise e
- logger.error("ES search timeout for 3 times!")
- raise Exception("ES search timeout.")
-
- def insert(self, documents: list[dict], indexName: str, knowledgebaseId: str) -> list[str]:
- # Refers to https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html
- operations = []
- for d in documents:
- assert "_id" not in d
- assert "id" in d
- d_copy = copy.deepcopy(d)
- meta_id = d_copy["id"]
- del d_copy["id"]
- operations.append(
- {"index": {"_index": indexName, "_id": meta_id}})
- operations.append(d_copy)
-
- res = []
- for _ in range(100):
- try:
- r = self.es.bulk(index=(indexName), operations=operations,
- refresh=False, timeout="600s")
- if re.search(r"False", str(r["errors"]), re.IGNORECASE):
- return res
-
- for item in r["items"]:
- for action in ["create", "delete", "index", "update"]:
- if action in item and "error" in item[action]:
- res.append(str(item[action]["_id"]) + ":" + str(item[action]["error"]))
- return res
- except Exception as e:
- logger.warning("Fail to bulk: " + str(e))
- if re.search(r"(Timeout|time out)", str(e), re.IGNORECASE):
- time.sleep(3)
- continue
- return res
-
- def update(self, condition: dict, newValue: dict, indexName: str, knowledgebaseId: str) -> bool:
- doc = copy.deepcopy(newValue)
- del doc['id']
- if "id" in condition and isinstance(condition["id"], str):
- # update specific single document
- chunkId = condition["id"]
- for i in range(3):
- try:
- self.es.update(index=indexName, id=chunkId, doc=doc)
- return True
- except Exception as e:
- logger.exception(f"ES failed to update(index={indexName}, id={id}, doc={json.dumps(condition, ensure_ascii=False)})")
- if str(e).find("Timeout") > 0:
- continue
- else:
- # update unspecific maybe-multiple documents
- bqry = Q("bool")
- for k, v in condition.items():
- if not isinstance(k, str) or not v:
- continue
- if isinstance(v, list):
- bqry.filter.append(Q("terms", **{k: v}))
- elif isinstance(v, str) or isinstance(v, int):
- bqry.filter.append(Q("term", **{k: v}))
- else:
- raise Exception(f"Condition `{str(k)}={str(v)}` value type is {str(type(v))}, expected to be int, str or list.")
- scripts = []
- for k, v in newValue.items():
- if not isinstance(k, str) or not v:
- continue
- if isinstance(v, str):
- scripts.append(f"ctx._source.{k} = '{v}'")
- elif isinstance(v, int):
- scripts.append(f"ctx._source.{k} = {v}")
- else:
- raise Exception(f"newValue `{str(k)}={str(v)}` value type is {str(type(v))}, expected to be int, str.")
- ubq = UpdateByQuery(
- index=indexName).using(
- self.es).query(bqry)
- ubq = ubq.script(source="; ".join(scripts))
- ubq = ubq.params(refresh=True)
- ubq = ubq.params(slices=5)
- ubq = ubq.params(conflicts="proceed")
- for i in range(3):
- try:
- _ = ubq.execute()
- return True
- except Exception as e:
- logger.error("ES update exception: " + str(e) + "[Q]:" + str(bqry.to_dict()))
- if str(e).find("Timeout") > 0 or str(e).find("Conflict") > 0:
- continue
- return False
-
- def delete(self, condition: dict, indexName: str, knowledgebaseId: str) -> int:
- qry = None
- assert "_id" not in condition
- if "id" in condition:
- chunk_ids = condition["id"]
- if not isinstance(chunk_ids, list):
- chunk_ids = [chunk_ids]
- qry = Q("ids", values=chunk_ids)
- else:
- qry = Q("bool")
- for k, v in condition.items():
- if isinstance(v, list):
- qry.must.append(Q("terms", **{k: v}))
- elif isinstance(v, str) or isinstance(v, int):
- qry.must.append(Q("term", **{k: v}))
- else:
- raise Exception("Condition value must be int, str or list.")
- logger.info("ESConnection.delete [Q]: " + json.dumps(qry.to_dict()))
- for _ in range(10):
- try:
- res = self.es.delete_by_query(
- index=indexName,
- body = Search().query(qry).to_dict(),
- refresh=True)
- return res["deleted"]
- except Exception as e:
- logger.warning("Fail to delete: " + str(filter) + str(e))
- if re.search(r"(Timeout|time out)", str(e), re.IGNORECASE):
- time.sleep(3)
- continue
- if re.search(r"(not_found)", str(e), re.IGNORECASE):
- return 0
- return 0
-
-
- """
- Helper functions for search result
- """
- def getTotal(self, res):
- if isinstance(res["hits"]["total"], type({})):
- return res["hits"]["total"]["value"]
- return res["hits"]["total"]
-
- def getChunkIds(self, res):
- return [d["_id"] for d in res["hits"]["hits"]]
-
- def __getSource(self, res):
- rr = []
- for d in res["hits"]["hits"]:
- d["_source"]["id"] = d["_id"]
- d["_source"]["_score"] = d["_score"]
- rr.append(d["_source"])
- return rr
-
- def getFields(self, res, fields: List[str]) -> Dict[str, dict]:
- res_fields = {}
- if not fields:
- return {}
- for d in self.__getSource(res):
- m = {n: d.get(n) for n in fields if d.get(n) is not None}
- for n, v in m.items():
- if isinstance(v, list):
- m[n] = v
- continue
- if not isinstance(v, str):
- m[n] = str(m[n])
- # if n.find("tks") > 0:
- # m[n] = rmSpace(m[n])
-
- if m:
- res_fields[d["id"]] = m
- return res_fields
-
- def getHighlight(self, res, keywords: List[str], fieldnm: str):
- ans = {}
- for d in res["hits"]["hits"]:
- hlts = d.get("highlight")
- if not hlts:
- continue
- txt = "...".join([a for a in list(hlts.items())[0][1]])
- if not is_english(txt.split(" ")):
- ans[d["_id"]] = txt
- continue
-
- txt = d["_source"][fieldnm]
- txt = re.sub(r"[\r\n]", " ", txt, flags=re.IGNORECASE|re.MULTILINE)
- txts = []
- for t in re.split(r"[.?!;\n]", txt):
- for w in keywords:
- t = re.sub(r"(^|[ .?/'\"\(\)!,:;-])(%s)([ .?/'\"\(\)!,:;-])"%re.escape(w), r"\1<em>\2</em>\3", t, flags=re.IGNORECASE|re.MULTILINE)
- if not re.search(r"<em>[^<>]+</em>", t, flags=re.IGNORECASE|re.MULTILINE):
- continue
- txts.append(t)
- ans[d["_id"]] = "...".join(txts) if txts else "...".join([a for a in list(hlts.items())[0][1]])
-
- return ans
-
- def getAggregation(self, res, fieldnm: str):
- agg_field = "aggs_" + fieldnm
- if "aggregations" not in res or agg_field not in res["aggregations"]:
- return list()
- bkts = res["aggregations"][agg_field]["buckets"]
- return [(b["key"], b["doc_count"]) for b in bkts]
-
-
- """
- SQL
- """
- def sql(self, sql: str, fetch_size: int, format: str):
- logger.info(f"ESConnection.sql get sql: {sql}")
- sql = re.sub(r"[ `]+", " ", sql)
- sql = sql.replace("%", "")
- replaces = []
- for r in re.finditer(r" ([a-z_]+_l?tks)( like | ?= ?)'([^']+)'", sql):
- fld, v = r.group(1), r.group(3)
- match = " MATCH({}, '{}', 'operator=OR;minimum_should_match=30%') ".format(
- fld, rag_tokenizer.fine_grained_tokenize(rag_tokenizer.tokenize(v)))
- replaces.append(
- ("{}{}'{}'".format(
- r.group(1),
- r.group(2),
- r.group(3)),
- match))
-
- for p, r in replaces:
- sql = sql.replace(p, r, 1)
- logger.info(f"ESConnection.sql to es: {sql}")
-
- for i in range(3):
- try:
- res = self.es.sql.query(body={"query": sql, "fetch_size": fetch_size}, format=format, request_timeout="2s")
- return res
- except ConnectionTimeout:
- logger.exception("ESConnection.sql timeout [Q]: " + sql)
- continue
- except Exception:
- logger.exception("ESConnection.sql got exception [Q]: " + sql)
- return None
- logger.error("ESConnection.sql timeout for 3 times!")
- return None
|