| 
                        123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597 | 
                        - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - 
 - import re
 - import copy
 - import time
 - import datetime
 - import demjson3
 - import traceback
 - import signal
 - import numpy as np
 - from deepdoc.parser.resume.entities import degrees, schools, corporations
 - from rag.nlp import rag_tokenizer, surname
 - from xpinyin import Pinyin
 - from contextlib import contextmanager
 - from api.utils.log_utils import logger
 - 
 - 
 - class TimeoutException(Exception): pass
 - 
 - 
 - @contextmanager
 - def time_limit(seconds):
 -     def signal_handler(signum, frame):
 -         raise TimeoutException("Timed out!")
 - 
 -     signal.signal(signal.SIGALRM, signal_handler)
 -     signal.alarm(seconds)
 -     try:
 -         yield
 -     finally:
 -         signal.alarm(0)
 - 
 - 
 - ENV = None
 - PY = Pinyin()
 - 
 - 
 - def rmHtmlTag(line):
 -     return re.sub(r"<[a-z0-9.\"=';,:\+_/ -]+>", " ", line, 100000, re.IGNORECASE)
 - 
 - 
 - def highest_degree(dg):
 -     if not dg: return ""
 -     if type(dg) == type(""): dg = [dg]
 -     m = {"初中": 0, "高中": 1, "中专": 2, "大专": 3, "专升本": 4, "本科": 5, "硕士": 6, "博士": 7, "博士后": 8}
 -     return sorted([(d, m.get(d, -1)) for d in dg], key=lambda x: x[1] * -1)[0][0]
 - 
 - 
 - def forEdu(cv):
 -     if not cv.get("education_obj"):
 -         cv["integerity_flt"] *= 0.8
 -         return cv
 - 
 -     first_fea, fea, maj, fmaj, deg, fdeg, sch, fsch, st_dt, ed_dt = [], [], [], [], [], [], [], [], [], []
 -     edu_nst = []
 -     edu_end_dt = ""
 -     cv["school_rank_int"] = 1000000
 -     for ii, n in enumerate(sorted(cv["education_obj"], key=lambda x: x.get("start_time", "3"))):
 -         e = {}
 -         if n.get("end_time"):
 -             if n["end_time"] > edu_end_dt: edu_end_dt = n["end_time"]
 -             try:
 -                 dt = n["end_time"]
 -                 if re.match(r"[0-9]{9,}", dt): dt = turnTm2Dt(dt)
 -                 y, m, d = getYMD(dt)
 -                 ed_dt.append(str(y))
 -                 e["end_dt_kwd"] = str(y)
 -             except Exception as e:
 -                 pass
 -         if n.get("start_time"):
 -             try:
 -                 dt = n["start_time"]
 -                 if re.match(r"[0-9]{9,}", dt): dt = turnTm2Dt(dt)
 -                 y, m, d = getYMD(dt)
 -                 st_dt.append(str(y))
 -                 e["start_dt_kwd"] = str(y)
 -             except Exception:
 -                 pass
 - 
 -         r = schools.select(n.get("school_name", ""))
 -         if r:
 -             if str(r.get("type", "")) == "1": fea.append("211")
 -             if str(r.get("type", "")) == "2": fea.append("211")
 -             if str(r.get("is_abroad", "")) == "1": fea.append("留学")
 -             if str(r.get("is_double_first", "")) == "1": fea.append("双一流")
 -             if str(r.get("is_985", "")) == "1": fea.append("985")
 -             if str(r.get("is_world_known", "")) == "1": fea.append("海外知名")
 -             if r.get("rank") and cv["school_rank_int"] > r["rank"]: cv["school_rank_int"] = r["rank"]
 - 
 -         if n.get("school_name") and isinstance(n["school_name"], str):
 -             sch.append(re.sub(r"(211|985|重点大学|[,&;;-])", "", n["school_name"]))
 -             e["sch_nm_kwd"] = sch[-1]
 -         fea.append(rag_tokenizer.fine_grained_tokenize(rag_tokenizer.tokenize(n.get("school_name", ""))).split(" ")[-1])
 - 
 -         if n.get("discipline_name") and isinstance(n["discipline_name"], str):
 -             maj.append(n["discipline_name"])
 -             e["major_kwd"] = n["discipline_name"]
 - 
 -         if not n.get("degree") and "985" in fea and not first_fea: n["degree"] = "1"
 - 
 -         if n.get("degree"):
 -             d = degrees.get_name(n["degree"])
 -             if d: e["degree_kwd"] = d
 -             if d == "本科" and ("专科" in deg or "专升本" in deg or "中专" in deg or "大专" in deg or re.search(r"(成人|自考|自学考试)",
 -                                                                                                      n.get(
 -                                                                                                          "school_name",
 -                                                                                                          ""))): d = "专升本"
 -             if d: deg.append(d)
 - 
 -             # for first degree
 -             if not fdeg and d in ["中专", "专升本", "专科", "本科", "大专"]:
 -                 fdeg = [d]
 -                 if n.get("school_name"): fsch = [n["school_name"]]
 -                 if n.get("discipline_name"): fmaj = [n["discipline_name"]]
 -                 first_fea = copy.deepcopy(fea)
 - 
 -         edu_nst.append(e)
 - 
 -     cv["sch_rank_kwd"] = []
 -     if cv["school_rank_int"] <= 20 \
 -             or ("海外名校" in fea and cv["school_rank_int"] <= 200):
 -         cv["sch_rank_kwd"].append("顶尖学校")
 -     elif cv["school_rank_int"] <= 50 and cv["school_rank_int"] > 20 \
 -             or ("海外名校" in fea and cv["school_rank_int"] <= 500 and \
 -                 cv["school_rank_int"] > 200):
 -         cv["sch_rank_kwd"].append("精英学校")
 -     elif cv["school_rank_int"] > 50 and ("985" in fea or "211" in fea) \
 -             or ("海外名校" in fea and cv["school_rank_int"] > 500):
 -         cv["sch_rank_kwd"].append("优质学校")
 -     else:
 -         cv["sch_rank_kwd"].append("一般学校")
 - 
 -     if edu_nst: cv["edu_nst"] = edu_nst
 -     if fea: cv["edu_fea_kwd"] = list(set(fea))
 -     if first_fea: cv["edu_first_fea_kwd"] = list(set(first_fea))
 -     if maj: cv["major_kwd"] = maj
 -     if fsch: cv["first_school_name_kwd"] = fsch
 -     if fdeg: cv["first_degree_kwd"] = fdeg
 -     if fmaj: cv["first_major_kwd"] = fmaj
 -     if st_dt: cv["edu_start_kwd"] = st_dt
 -     if ed_dt: cv["edu_end_kwd"] = ed_dt
 -     if ed_dt: cv["edu_end_int"] = max([int(t) for t in ed_dt])
 -     if deg:
 -         if "本科" in deg and "专科" in deg:
 -             deg.append("专升本")
 -             deg = [d for d in deg if d != '本科']
 -         cv["degree_kwd"] = deg
 -         cv["highest_degree_kwd"] = highest_degree(deg)
 -     if edu_end_dt:
 -         try:
 -             if re.match(r"[0-9]{9,}", edu_end_dt): edu_end_dt = turnTm2Dt(edu_end_dt)
 -             if edu_end_dt.strip("\n") == "至今": edu_end_dt = cv.get("updated_at_dt", str(datetime.date.today()))
 -             y, m, d = getYMD(edu_end_dt)
 -             cv["work_exp_flt"] = min(int(str(datetime.date.today())[0:4]) - int(y), cv.get("work_exp_flt", 1000))
 -         except Exception as e:
 -             logger.exception("forEdu {} {} {}".format(e, edu_end_dt, cv.get("work_exp_flt")))
 -     if sch:
 -         cv["school_name_kwd"] = sch
 -         if (len(cv.get("degree_kwd", [])) >= 1 and "本科" in cv["degree_kwd"]) \
 -                 or all([c.lower() in ["硕士", "博士", "mba", "博士后"] for c in cv.get("degree_kwd", [])]) \
 -                 or not cv.get("degree_kwd"):
 -             for c in sch:
 -                 if schools.is_good(c):
 -                     if "tag_kwd" not in cv: cv["tag_kwd"] = []
 -                     cv["tag_kwd"].append("好学校")
 -                     cv["tag_kwd"].append("好学历")
 -                     break
 -         if (len(cv.get("degree_kwd", [])) >= 1 and \
 -             "本科" in cv["degree_kwd"] and \
 -             any([d.lower() in ["硕士", "博士", "mba", "博士"] for d in cv.get("degree_kwd", [])])) \
 -                 or all([d.lower() in ["硕士", "博士", "mba", "博士后"] for d in cv.get("degree_kwd", [])]) \
 -                 or any([d in ["mba", "emba", "博士后"] for d in cv.get("degree_kwd", [])]):
 -             if "tag_kwd" not in cv: cv["tag_kwd"] = []
 -             if "好学历" not in cv["tag_kwd"]: cv["tag_kwd"].append("好学历")
 - 
 -     if cv.get("major_kwd"): cv["major_tks"] = rag_tokenizer.tokenize(" ".join(maj))
 -     if cv.get("school_name_kwd"): cv["school_name_tks"] = rag_tokenizer.tokenize(" ".join(sch))
 -     if cv.get("first_school_name_kwd"): cv["first_school_name_tks"] = rag_tokenizer.tokenize(" ".join(fsch))
 -     if cv.get("first_major_kwd"): cv["first_major_tks"] = rag_tokenizer.tokenize(" ".join(fmaj))
 - 
 -     return cv
 - 
 - 
 - def forProj(cv):
 -     if not cv.get("project_obj"): return cv
 - 
 -     pro_nms, desc = [], []
 -     for i, n in enumerate(
 -             sorted(cv.get("project_obj", []), key=lambda x: str(x.get("updated_at", "")) if type(x) == type({}) else "",
 -                    reverse=True)):
 -         if n.get("name"): pro_nms.append(n["name"])
 -         if n.get("describe"): desc.append(str(n["describe"]))
 -         if n.get("responsibilities"): desc.append(str(n["responsibilities"]))
 -         if n.get("achivement"): desc.append(str(n["achivement"]))
 - 
 -     if pro_nms:
 -         # cv["pro_nms_tks"] = rag_tokenizer.tokenize(" ".join(pro_nms))
 -         cv["project_name_tks"] = rag_tokenizer.tokenize(pro_nms[0])
 -     if desc:
 -         cv["pro_desc_ltks"] = rag_tokenizer.tokenize(rmHtmlTag(" ".join(desc)))
 -         cv["project_desc_ltks"] = rag_tokenizer.tokenize(rmHtmlTag(desc[0]))
 - 
 -     return cv
 - 
 - 
 - def json_loads(line):
 -     return demjson3.decode(re.sub(r": *(True|False)", r": '\1'", line))
 - 
 - 
 - def forWork(cv):
 -     if not cv.get("work_obj"):
 -         cv["integerity_flt"] *= 0.7
 -         return cv
 - 
 -     flds = ["position_name", "corporation_name", "corporation_id", "responsibilities",
 -             "industry_name", "subordinates_count"]
 -     duas = []
 -     scales = []
 -     fea = {c: [] for c in flds}
 -     latest_job_tm = ""
 -     goodcorp = False
 -     goodcorp_ = False
 -     work_st_tm = ""
 -     corp_tags = []
 -     for i, n in enumerate(
 -             sorted(cv.get("work_obj", []), key=lambda x: str(x.get("start_time", "")) if type(x) == type({}) else "",
 -                    reverse=True)):
 -         if type(n) == type(""):
 -             try:
 -                 n = json_loads(n)
 -             except Exception:
 -                 continue
 - 
 -         if n.get("start_time") and (not work_st_tm or n["start_time"] < work_st_tm): work_st_tm = n["start_time"]
 -         for c in flds:
 -             if not n.get(c) or str(n[c]) == '0':
 -                 fea[c].append("")
 -                 continue
 -             if c == "corporation_name":
 -                 n[c] = corporations.corpNorm(n[c], False)
 -                 if corporations.is_good(n[c]):
 -                     if i == 0:
 -                         goodcorp = True
 -                     else:
 -                         goodcorp_ = True
 -                 ct = corporations.corp_tag(n[c])
 -                 if i == 0:
 -                     corp_tags.extend(ct)
 -                 elif ct and ct[0] != "软外":
 -                     corp_tags.extend([f"{t}(曾)" for t in ct])
 - 
 -             fea[c].append(rmHtmlTag(str(n[c]).lower()))
 - 
 -         y, m, d = getYMD(n.get("start_time"))
 -         if not y or not m: continue
 -         st = "%s-%02d-%02d" % (y, int(m), int(d))
 -         latest_job_tm = st
 - 
 -         y, m, d = getYMD(n.get("end_time"))
 -         if (not y or not m) and i > 0: continue
 -         if not y or not m or int(y) > 2022:  y, m, d = getYMD(str(n.get("updated_at", "")))
 -         if not y or not m: continue
 -         ed = "%s-%02d-%02d" % (y, int(m), int(d))
 - 
 -         try:
 -             duas.append((datetime.datetime.strptime(ed, "%Y-%m-%d") - datetime.datetime.strptime(st, "%Y-%m-%d")).days)
 -         except Exception:
 -             logger.exception("forWork {} {}".format(n.get("start_time"), n.get("end_time")))
 - 
 -         if n.get("scale"):
 -             r = re.search(r"^([0-9]+)", str(n["scale"]))
 -             if r: scales.append(int(r.group(1)))
 - 
 -     if goodcorp:
 -         if "tag_kwd" not in cv: cv["tag_kwd"] = []
 -         cv["tag_kwd"].append("好公司")
 -     if goodcorp_:
 -         if "tag_kwd" not in cv: cv["tag_kwd"] = []
 -         cv["tag_kwd"].append("好公司(曾)")
 - 
 -     if corp_tags:
 -         if "tag_kwd" not in cv: cv["tag_kwd"] = []
 -         cv["tag_kwd"].extend(corp_tags)
 -         cv["corp_tag_kwd"] = [c for c in corp_tags if re.match(r"(综合|行业)", c)]
 - 
 -     if latest_job_tm: cv["latest_job_dt"] = latest_job_tm
 -     if fea["corporation_id"]: cv["corporation_id"] = fea["corporation_id"]
 - 
 -     if fea["position_name"]:
 -         cv["position_name_tks"] = rag_tokenizer.tokenize(fea["position_name"][0])
 -         cv["position_name_sm_tks"] = rag_tokenizer.fine_grained_tokenize(cv["position_name_tks"])
 -         cv["pos_nm_tks"] = rag_tokenizer.tokenize(" ".join(fea["position_name"][1:]))
 - 
 -     if fea["industry_name"]:
 -         cv["industry_name_tks"] = rag_tokenizer.tokenize(fea["industry_name"][0])
 -         cv["industry_name_sm_tks"] = rag_tokenizer.fine_grained_tokenize(cv["industry_name_tks"])
 -         cv["indu_nm_tks"] = rag_tokenizer.tokenize(" ".join(fea["industry_name"][1:]))
 - 
 -     if fea["corporation_name"]:
 -         cv["corporation_name_kwd"] = fea["corporation_name"][0]
 -         cv["corp_nm_kwd"] = fea["corporation_name"]
 -         cv["corporation_name_tks"] = rag_tokenizer.tokenize(fea["corporation_name"][0])
 -         cv["corporation_name_sm_tks"] = rag_tokenizer.fine_grained_tokenize(cv["corporation_name_tks"])
 -         cv["corp_nm_tks"] = rag_tokenizer.tokenize(" ".join(fea["corporation_name"][1:]))
 - 
 -     if fea["responsibilities"]:
 -         cv["responsibilities_ltks"] = rag_tokenizer.tokenize(fea["responsibilities"][0])
 -         cv["resp_ltks"] = rag_tokenizer.tokenize(" ".join(fea["responsibilities"][1:]))
 - 
 -     if fea["subordinates_count"]: fea["subordinates_count"] = [int(i) for i in fea["subordinates_count"] if
 -                                                                re.match(r"[^0-9]+$", str(i))]
 -     if fea["subordinates_count"]: cv["max_sub_cnt_int"] = np.max(fea["subordinates_count"])
 - 
 -     if type(cv.get("corporation_id")) == type(1): cv["corporation_id"] = [str(cv["corporation_id"])]
 -     if not cv.get("corporation_id"): cv["corporation_id"] = []
 -     for i in cv.get("corporation_id", []):
 -         cv["baike_flt"] = max(corporations.baike(i), cv["baike_flt"] if "baike_flt" in cv else 0)
 - 
 -     if work_st_tm:
 -         try:
 -             if re.match(r"[0-9]{9,}", work_st_tm): work_st_tm = turnTm2Dt(work_st_tm)
 -             y, m, d = getYMD(work_st_tm)
 -             cv["work_exp_flt"] = min(int(str(datetime.date.today())[0:4]) - int(y), cv.get("work_exp_flt", 1000))
 -         except Exception as e:
 -             logger.exception("forWork {} {} {}".format(e, work_st_tm, cv.get("work_exp_flt")))
 - 
 -     cv["job_num_int"] = 0
 -     if duas:
 -         cv["dua_flt"] = np.mean(duas)
 -         cv["cur_dua_int"] = duas[0]
 -         cv["job_num_int"] = len(duas)
 -     if scales: cv["scale_flt"] = np.max(scales)
 -     return cv
 - 
 - 
 - def turnTm2Dt(b):
 -     if not b: return
 -     b = str(b).strip()
 -     if re.match(r"[0-9]{10,}", b): b = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(int(b[:10])))
 -     return b
 - 
 - 
 - def getYMD(b):
 -     y, m, d = "", "", "01"
 -     if not b: return (y, m, d)
 -     b = turnTm2Dt(b)
 -     if re.match(r"[0-9]{4}", b): y = int(b[:4])
 -     r = re.search(r"[0-9]{4}.?([0-9]{1,2})", b)
 -     if r: m = r.group(1)
 -     r = re.search(r"[0-9]{4}.?[0-9]{,2}.?([0-9]{1,2})", b)
 -     if r: d = r.group(1)
 -     if not d or int(d) == 0 or int(d) > 31: d = "1"
 -     if not m or int(m) > 12 or int(m) < 1: m = "1"
 -     return (y, m, d)
 - 
 - 
 - def birth(cv):
 -     if not cv.get("birth"):
 -         cv["integerity_flt"] *= 0.9
 -         return cv
 -     y, m, d = getYMD(cv["birth"])
 -     if not m or not y: return cv
 -     b = "%s-%02d-%02d" % (y, int(m), int(d))
 -     cv["birth_dt"] = b
 -     cv["birthday_kwd"] = "%02d%02d" % (int(m), int(d))
 - 
 -     cv["age_int"] = datetime.datetime.now().year - int(y)
 -     return cv
 - 
 - 
 - def parse(cv):
 -     for k in cv.keys():
 -         if cv[k] == '\\N': cv[k] = ''
 -     # cv = cv.asDict()
 -     tks_fld = ["address", "corporation_name", "discipline_name", "email", "expect_city_names",
 -                "expect_industry_name", "expect_position_name", "industry_name", "industry_names", "name",
 -                "position_name", "school_name", "self_remark", "title_name"]
 -     small_tks_fld = ["corporation_name", "expect_position_name", "position_name", "school_name", "title_name"]
 -     kwd_fld = ["address", "city", "corporation_type", "degree", "discipline_name", "expect_city_names", "email",
 -                "expect_industry_name", "expect_position_name", "expect_type", "gender", "industry_name",
 -                "industry_names", "political_status", "position_name", "scale", "school_name", "phone", "tel"]
 -     num_fld = ["annual_salary", "annual_salary_from", "annual_salary_to", "expect_annual_salary", "expect_salary_from",
 -                "expect_salary_to", "salary_month"]
 - 
 -     is_fld = [
 -         ("is_fertility", "已育", "未育"),
 -         ("is_house", "有房", "没房"),
 -         ("is_management_experience", "有管理经验", "无管理经验"),
 -         ("is_marital", "已婚", "未婚"),
 -         ("is_oversea", "有海外经验", "无海外经验")
 -     ]
 - 
 -     rmkeys = []
 -     for k in cv.keys():
 -         if cv[k] is None: rmkeys.append(k)
 -         if (type(cv[k]) == type([]) or type(cv[k]) == type("")) and len(cv[k]) == 0: rmkeys.append(k)
 -     for k in rmkeys: del cv[k]
 - 
 -     integerity = 0.
 -     flds_num = 0.
 - 
 -     def hasValues(flds):
 -         nonlocal integerity, flds_num
 -         flds_num += len(flds)
 -         for f in flds:
 -             v = str(cv.get(f, ""))
 -             if len(v) > 0 and v != '0' and v != '[]': integerity += 1
 - 
 -     hasValues(tks_fld)
 -     hasValues(small_tks_fld)
 -     hasValues(kwd_fld)
 -     hasValues(num_fld)
 -     cv["integerity_flt"] = integerity / flds_num
 - 
 -     if cv.get("corporation_type"):
 -         for p, r in [(r"(公司|企业|其它|其他|Others*|\n|未填写|Enterprises|Company|companies)", ""),
 -                      (r"[//.· <\((]+.*", ""),
 -                      (r".*(合资|民企|股份制|中外|私营|个体|Private|创业|Owned|投资).*", "民营"),
 -                      (r".*(机关|事业).*", "机关"),
 -                      (r".*(非盈利|Non-profit).*", "非盈利"),
 -                      (r".*(外企|外商|欧美|foreign|Institution|Australia|港资).*", "外企"),
 -                      (r".*国有.*", "国企"),
 -                      (r"[ ()\(\)人/·0-9-]+", ""),
 -                      (r".*(元|规模|于|=|北京|上海|至今|中国|工资|州|shanghai|强|餐饮|融资|职).*", "")]:
 -             cv["corporation_type"] = re.sub(p, r, cv["corporation_type"], 1000, re.IGNORECASE)
 -         if len(cv["corporation_type"]) < 2: del cv["corporation_type"]
 - 
 -     if cv.get("political_status"):
 -         for p, r in [
 -             (r".*党员.*", "党员"),
 -             (r".*(无党派|公民).*", "群众"),
 -             (r".*团员.*", "团员")]:
 -             cv["political_status"] = re.sub(p, r, cv["political_status"])
 -         if not re.search(r"[党团群]", cv["political_status"]): del cv["political_status"]
 - 
 -     if cv.get("phone"): cv["phone"] = re.sub(r"^0*86([0-9]{11})", r"\1", re.sub(r"[^0-9]+", "", cv["phone"]))
 - 
 -     keys = list(cv.keys())
 -     for k in keys:
 -         # deal with json objects
 -         if k.find("_obj") > 0:
 -             try:
 -                 cv[k] = json_loads(cv[k])
 -                 cv[k] = [a for _, a in cv[k].items()]
 -                 nms = []
 -                 for n in cv[k]:
 -                     if type(n) != type({}) or "name" not in n or not n.get("name"): continue
 -                     n["name"] = re.sub(r"((442)|\t )", "", n["name"]).strip().lower()
 -                     if not n["name"]: continue
 -                     nms.append(n["name"])
 -                 if nms:
 -                     t = k[:-4]
 -                     cv[f"{t}_kwd"] = nms
 -                     cv[f"{t}_tks"] = rag_tokenizer.tokenize(" ".join(nms))
 -             except Exception:
 -                 logger.exception("parse {} {}".format(str(traceback.format_exc()), cv[k]))
 -                 cv[k] = []
 - 
 -         # tokenize fields
 -         if k in tks_fld:
 -             cv[f"{k}_tks"] = rag_tokenizer.tokenize(cv[k])
 -             if k in small_tks_fld: cv[f"{k}_sm_tks"] = rag_tokenizer.tokenize(cv[f"{k}_tks"])
 - 
 -         # keyword fields
 -         if k in kwd_fld: cv[f"{k}_kwd"] = [n.lower()
 -                                            for n in re.split(r"[\t,,;;. ]",
 -                                                              re.sub(r"([^a-zA-Z])[ ]+([^a-zA-Z ])", r"\1,\2", cv[k])
 -                                                              ) if n]
 - 
 -         if k in num_fld and cv.get(k): cv[f"{k}_int"] = cv[k]
 - 
 -     cv["email_kwd"] = cv.get("email_tks", "").replace(" ", "")
 -     # for name field
 -     if cv.get("name"):
 -         nm = re.sub(r"[\n——\-\((\+].*", "", cv["name"].strip())
 -         nm = re.sub(r"[ \t ]+", " ", nm)
 -         if re.match(r"[a-zA-Z ]+$", nm):
 -             if len(nm.split(" ")) > 1:
 -                 cv["name"] = nm
 -             else:
 -                 nm = ""
 -         elif nm and (surname.isit(nm[0]) or surname.isit(nm[:2])):
 -             nm = re.sub(r"[a-zA-Z]+.*", "", nm[:5])
 -         else:
 -             nm = ""
 -         cv["name"] = nm.strip()
 -         name = cv["name"]
 - 
 -         # name pingyin and its prefix
 -         cv["name_py_tks"] = " ".join(PY.get_pinyins(nm[:20], '')) + " " + " ".join(PY.get_pinyins(nm[:20], ' '))
 -         cv["name_py_pref0_tks"] = ""
 -         cv["name_py_pref_tks"] = ""
 -         for py in PY.get_pinyins(nm[:20], ''):
 -             for i in range(2, len(py) + 1): cv["name_py_pref_tks"] += " " + py[:i]
 -         for py in PY.get_pinyins(nm[:20], ' '):
 -             py = py.split(" ")
 -             for i in range(1, len(py) + 1): cv["name_py_pref0_tks"] += " " + "".join(py[:i])
 - 
 -         cv["name_kwd"] = name
 -         cv["name_pinyin_kwd"] = PY.get_pinyins(nm[:20], ' ')[:3]
 -         cv["name_tks"] = (
 -                 rag_tokenizer.tokenize(name) + " " + (" ".join(list(name)) if not re.match(r"[a-zA-Z ]+$", name) else "")
 -         ) if name else ""
 -     else:
 -         cv["integerity_flt"] /= 2.
 - 
 -     if cv.get("phone"):
 -         r = re.search(r"(1[3456789][0-9]{9})", cv["phone"])
 -         if not r:
 -             cv["phone"] = ""
 -         else:
 -             cv["phone"] = r.group(1)
 - 
 -     # deal with date  fields
 -     if cv.get("updated_at") and isinstance(cv["updated_at"], datetime.datetime):
 -         cv["updated_at_dt"] = cv["updated_at"].strftime('%Y-%m-%d %H:%M:%S')
 -     else:
 -         y, m, d = getYMD(str(cv.get("updated_at", "")))
 -         if not y: y = "2012"
 -         if not m: m = "01"
 -         if not d: d = "01"
 -         cv["updated_at_dt"] = "%s-%02d-%02d 00:00:00" % (y, int(m), int(d))
 -         # long text tokenize
 - 
 -     if cv.get("responsibilities"): cv["responsibilities_ltks"] = rag_tokenizer.tokenize(rmHtmlTag(cv["responsibilities"]))
 - 
 -     # for yes or no field
 -     fea = []
 -     for f, y, n in is_fld:
 -         if f not in cv: continue
 -         if cv[f] == '是': fea.append(y)
 -         if cv[f] == '否': fea.append(n)
 - 
 -     if fea: cv["tag_kwd"] = fea
 - 
 -     cv = forEdu(cv)
 -     cv = forProj(cv)
 -     cv = forWork(cv)
 -     cv = birth(cv)
 - 
 -     cv["corp_proj_sch_deg_kwd"] = [c for c in cv.get("corp_tag_kwd", [])]
 -     for i in range(len(cv["corp_proj_sch_deg_kwd"])):
 -         for j in cv.get("sch_rank_kwd", []): cv["corp_proj_sch_deg_kwd"][i] += "+" + j
 -     for i in range(len(cv["corp_proj_sch_deg_kwd"])):
 -         if cv.get("highest_degree_kwd"): cv["corp_proj_sch_deg_kwd"][i] += "+" + cv["highest_degree_kwd"]
 - 
 -     try:
 -         if not cv.get("work_exp_flt") and cv.get("work_start_time"):
 -             if re.match(r"[0-9]{9,}", str(cv["work_start_time"])):
 -                 cv["work_start_dt"] = turnTm2Dt(cv["work_start_time"])
 -                 cv["work_exp_flt"] = (time.time() - int(int(cv["work_start_time"]) / 1000)) / 3600. / 24. / 365.
 -             elif re.match(r"[0-9]{4}[^0-9]", str(cv["work_start_time"])):
 -                 y, m, d = getYMD(str(cv["work_start_time"]))
 -                 cv["work_start_dt"] = "%s-%02d-%02d 00:00:00" % (y, int(m), int(d))
 -                 cv["work_exp_flt"] = int(str(datetime.date.today())[0:4]) - int(y)
 -     except Exception as e:
 -         logger.exception("parse {} ==> {}".format(e, cv.get("work_start_time")))
 -     if "work_exp_flt" not in cv and cv.get("work_experience", 0): cv["work_exp_flt"] = int(cv["work_experience"]) / 12.
 - 
 -     keys = list(cv.keys())
 -     for k in keys:
 -         if not re.search(r"_(fea|tks|nst|dt|int|flt|ltks|kwd|id)$", k): del cv[k]
 -     for k in cv.keys():
 -         if not re.search("_(kwd|id)$", k) or type(cv[k]) != type([]): continue
 -         cv[k] = list(set([re.sub("(市)$", "", str(n)) for n in cv[k] if n not in ['中国', '0']]))
 -     keys = [k for k in cv.keys() if re.search(r"_feas*$", k)]
 -     for k in keys:
 -         if cv[k] <= 0: del cv[k]
 - 
 -     cv["tob_resume_id"] = str(cv["tob_resume_id"])
 -     cv["id"] = cv["tob_resume_id"]
 -     logger.info("CCCCCCCCCCCCCCC")
 - 
 -     return dealWithInt64(cv)
 - 
 - 
 - def dealWithInt64(d):
 -     if isinstance(d, dict):
 -         for n, v in d.items():
 -             d[n] = dealWithInt64(v)
 - 
 -     if isinstance(d, list):
 -         d = [dealWithInt64(t) for t in d]
 - 
 -     if isinstance(d, np.integer): d = int(d)
 -     return d
 
 
  |