- <div align="center">
 - <a href="https://demo.ragflow.io/">
 - <img src="web/src/assets/logo-with-text.png" width="520" alt="ragflow logo">
 - </a>
 - </div>
 - 
 - <p align="center">
 -   <a href="./README.md">English</a> |
 -   <a href="./README_zh.md">简体中文</a> |
 -   <a href="./README_ja.md">日本語</a>
 - </p>
 - 
 - <p align="center">
 -     <a href="https://github.com/infiniflow/ragflow/releases/latest">
 -         <img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
 -     </a>
 -     <a href="https://demo.ragflow.io" target="_blank">
 -         <img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99"></a>
 -     <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
 -         <img src="https://img.shields.io/badge/docker_pull-ragflow:v0.5.0-brightgreen"
 -             alt="docker pull infiniflow/ragflow:v0.5.0"></a>
 -       <a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
 -     <img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?style=flat-square&labelColor=d4eaf7&color=1570EF" alt="license">
 -   </a>
 - </p>
 - 
 - ## 💡 What is RAGFlow?
 - 
 - [RAGFlow](https://ragflow.io/) is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data.
 - 
 - ## 📌 Latest Updates
 - 
 - - 2024-05-15 Integrates OpenAI GPT-4o.
 - - 2024-05-08 Integrates LLM DeepSeek-V2.
 - - 2024-04-26 Adds file management.
 - - 2024-04-19 Supports conversation API ([detail](./docs/conversation_api.md)).
 - - 2024-04-16 Integrates an embedding model 'bce-embedding-base_v1' from [BCEmbedding](https://github.com/netease-youdao/BCEmbedding), and [FastEmbed](https://github.com/qdrant/fastembed), which is designed specifically for light and speedy embedding.
 - - 2024-04-11 Supports [Xinference](./docs/xinference.md) for local LLM deployment.
 - - 2024-04-10 Adds a new layout recognition model for analyzing legal documents.
 - - 2024-04-08 Supports [Ollama](./docs/ollama.md) for local LLM deployment.
 - - 2024-04-07 Supports Chinese UI.
 - 
 - ## 🌟 Key Features
 - 
 - ### 🍭 **"Quality in, quality out"**
 - 
 - - [Deep document understanding](./deepdoc/README.md)-based knowledge extraction from unstructured data with complicated formats.
 - - Finds "needle in a data haystack" of literally unlimited tokens.
 - 
 - ### 🍱 **Template-based chunking**
 - 
 - - Intelligent and explainable.
 - - Plenty of template options to choose from.
 - 
 - ### 🌱 **Grounded citations with reduced hallucinations**
 - 
 - - Visualization of text chunking to allow human intervention.
 - - Quick view of the key references and traceable citations to support grounded answers.
 - 
 - ### 🍔 **Compatibility with heterogeneous data sources**
 - 
 - - Supports Word, slides, excel, txt, images, scanned copies, structured data, web pages, and more.
 - 
 - ### 🛀 **Automated and effortless RAG workflow**
 - 
 - - Streamlined RAG orchestration catered to both personal and large businesses.
 - - Configurable LLMs as well as embedding models.
 - - Multiple recall paired with fused re-ranking.
 - - Intuitive APIs for seamless integration with business.
 - 
 - ## 🔎 System Architecture
 - 
 - <div align="center" style="margin-top:20px;margin-bottom:20px;">
 - <img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>
 - </div>
 - 
 - ## 🎬 Get Started
 - 
 - ### 📝 Prerequisites
 - 
 - - CPU >= 4 cores
 - - RAM >= 16 GB
 - - Disk >= 50 GB
 - - Docker >= 24.0.0 & Docker Compose >= v2.26.1
 -   > If you have not installed Docker on your local machine (Windows, Mac, or Linux), see [Install Docker Engine](https://docs.docker.com/engine/install/).
 - 
 - ### 🚀 Start up the server
 - 
 - 1. Ensure `vm.max_map_count` >= 262144 ([more](./docs/max_map_count.md)):
 - 
 -    > To check the value of `vm.max_map_count`:
 -    >
 -    > ```bash
 -    > $ sysctl vm.max_map_count
 -    > ```
 -    >
 -    > Reset `vm.max_map_count` to a value at least 262144 if it is not.
 -    >
 -    > ```bash
 -    > # In this case, we set it to 262144:
 -    > $ sudo sysctl -w vm.max_map_count=262144
 -    > ```
 -    >
 -    > This change will be reset after a system reboot. To ensure your change remains permanent, add or update the `vm.max_map_count` value in **/etc/sysctl.conf** accordingly:
 -    >
 -    > ```bash
 -    > vm.max_map_count=262144
 -    > ```
 - 
 - 2. Clone the repo:
 - 
 -    ```bash
 -    $ git clone https://github.com/infiniflow/ragflow.git
 -    ```
 - 
 - 3. Build the pre-built Docker images and start up the server:
 - 
 -    > Running the following commands automatically downloads the *dev* version RAGFlow Docker image. To download and run a specified Docker version, update `RAGFLOW_VERSION` in **docker/.env** to the intended version, for example `RAGFLOW_VERSION=v0.5.0`, before running the following commands.
 - 
 -    ```bash
 -    $ cd ragflow/docker
 -    $ chmod +x ./entrypoint.sh
 -    $ docker compose up -d
 -    ```
 -    
 - 
 -    > The core image is about 9 GB in size and may take a while to load.
 - 
 - 4. Check the server status after having the server up and running:
 - 
 -    ```bash
 -    $ docker logs -f ragflow-server
 -    ```
 - 
 -    _The following output confirms a successful launch of the system:_
 - 
 -    ```bash
 -        ____                 ______ __
 -       / __ \ ____ _ ____ _ / ____// /____  _      __
 -      / /_/ // __ `// __ `// /_   / // __ \| | /| / /
 -     / _, _// /_/ // /_/ // __/  / // /_/ /| |/ |/ /
 -    /_/ |_| \__,_/ \__, //_/    /_/ \____/ |__/|__/
 -                  /____/
 - 
 -     * Running on all addresses (0.0.0.0)
 -     * Running on http://127.0.0.1:9380
 -     * Running on http://x.x.x.x:9380
 -     INFO:werkzeug:Press CTRL+C to quit
 -    ```
 -    > If you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a `network anomaly` error because, at that moment, your RAGFlow may not be fully initialized.  
 - 
 - 5. In your web browser, enter the IP address of your server and log in to RAGFlow.
 -    > With default settings, you only need to enter `http://IP_OF_YOUR_MACHINE` (**sans** port number) as the default HTTP serving port `80` can be omitted when using the default configurations.
 - 6. In [service_conf.yaml](./docker/service_conf.yaml), select the desired LLM factory in `user_default_llm` and update the `API_KEY` field with the corresponding API key.
 - 
 -    > See [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md) for more information.
 - 
 -    _The show is now on!_
 - 
 - ## 🔧 Configurations
 - 
 - When it comes to system configurations, you will need to manage the following files:
 - 
 - - [.env](./docker/.env): Keeps the fundamental setups for the system, such as `SVR_HTTP_PORT`, `MYSQL_PASSWORD`, and `MINIO_PASSWORD`.
 - - [service_conf.yaml](./docker/service_conf.yaml): Configures the back-end services.
 - - [docker-compose.yml](./docker/docker-compose.yml): The system relies on [docker-compose.yml](./docker/docker-compose.yml) to start up.
 - 
 - You must ensure that changes to the [.env](./docker/.env) file are in line with what are in the [service_conf.yaml](./docker/service_conf.yaml) file.
 - 
 - > The [./docker/README](./docker/README.md) file provides a detailed description of the environment settings and service configurations, and you are REQUIRED to ensure that all environment settings listed in the [./docker/README](./docker/README.md) file are aligned with the corresponding configurations in the [service_conf.yaml](./docker/service_conf.yaml) file.
 - 
 - To update the default HTTP serving port (80), go to [docker-compose.yml](./docker/docker-compose.yml) and change `80:80` to `<YOUR_SERVING_PORT>:80`.
 - 
 - > Updates to all system configurations require a system reboot to take effect:
 - >
 - > ```bash
 - > $ docker-compose up -d
 - > ```
 - 
 - ## 🛠️ Build from source
 - 
 - To build the Docker images from source:
 - 
 - ```bash
 - $ git clone https://github.com/infiniflow/ragflow.git
 - $ cd ragflow/
 - $ docker build -t infiniflow/ragflow:dev .
 - $ cd ragflow/docker
 - $ chmod +x ./entrypoint.sh
 - $ docker compose up -d
 - ```
 - 
 - ## 🛠️ Launch Service from Source
 - 
 - To launch the service from source, please follow these steps:
 - 
 - 1. Clone the repository
 - ```bash
 - $ git clone https://github.com/infiniflow/ragflow.git
 - $ cd ragflow/
 - ```
 - 
 - 2. Create a virtual environment (ensure Anaconda or Miniconda is installed)
 - ```bash
 - $ conda create -n ragflow python=3.11.0
 - $ conda activate ragflow
 - $ pip install -r requirements.txt
 - ```
 - If CUDA version is greater than 12.0, execute the following additional commands:
 - ```bash
 - $ pip uninstall -y onnxruntime-gpu
 - $ pip install onnxruntime-gpu --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/
 - ```
 - 
 - 3. Copy the entry script and configure environment variables
 - ```bash
 - $ cp docker/entrypoint.sh .
 - $ vi entrypoint.sh
 - ```
 - Use the following commands to obtain the Python path and the ragflow project path:
 - ```bash
 - $ which python
 - $ pwd
 - ```
 - 
 - Set the output of `which python` as the value for `PY` and the output of `pwd` as the value for `PYTHONPATH`.
 - 
 - If `LD_LIBRARY_PATH` is already configured, it can be commented out.
 - 
 - ```bash
 - # Adjust configurations according to your actual situation; the two export commands are newly added.
 - PY=${PY}
 - export PYTHONPATH=${PYTHONPATH}
 - # Optional: Add Hugging Face mirror
 - export HF_ENDPOINT=https://hf-mirror.com
 - ```
 - 
 - 4. Start the base services
 - ```bash
 - $ cd docker
 - $ docker compose -f docker-compose-base.yml up -d 
 - ```
 - 
 - 5. Check the configuration files
 - Ensure that the settings in **docker/.env** match those in **conf/service_conf.yaml**. The IP addresses and ports for related services in **service_conf.yaml** should be changed to the local machine IP and ports exposed by the container.
 - 
 - 6. Launch the service
 - ```bash
 - $ chmod +x ./entrypoint.sh
 - $ bash ./entrypoint.sh
 - ```
 - 
 - 7. Start the WebUI service
 - ```bash
 - $ cd web
 - $ npm install --registry=https://registry.npmmirror.com --force
 - $ vim .umirc.ts
 - # Modify proxy.target to 127.0.0.1:9380
 - $ npm run dev 
 - ```
 - 
 - 8. Deploy the WebUI service
 - ```bash
 - $ cd web
 - $ npm install --registry=https://registry.npmmirror.com --force
 - $ umi build
 - $ mkdir -p /ragflow/web
 - $ cp -r dist /ragflow/web
 - $ apt install nginx -y
 - $ cp ../docker/nginx/proxy.conf /etc/nginx
 - $ cp ../docker/nginx/nginx.conf /etc/nginx
 - $ cp ../docker/nginx/ragflow.conf /etc/nginx/conf.d
 - $ systemctl start nginx
 - ```
 - 
 - ## 📚 Documentation
 - 
 - - [Quickstart](./docs/quickstart.md)
 - - [FAQ](./docs/faq.md)
 - 
 - ## 📜 Roadmap
 - 
 - See the [RAGFlow Roadmap 2024](https://github.com/infiniflow/ragflow/issues/162)
 - 
 - ## 🏄 Community
 - 
 - - [Discord](https://discord.gg/4XxujFgUN7)
 - - [Twitter](https://twitter.com/infiniflowai)
 - 
 - ## 🙌 Contributing
 - 
 - RAGFlow flourishes via open-source collaboration. In this spirit, we embrace diverse contributions from the community. If you would like to be a part, review our [Contribution Guidelines](https://github.com/infiniflow/ragflow/blob/main/docs/CONTRIBUTING.md) first.
 
 
  |