您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444
  1. # Licensed under the Apache License, Version 2.0 (the "License");
  2. # you may not use this file except in compliance with the License.
  3. # You may obtain a copy of the License at
  4. #
  5. # http://www.apache.org/licenses/LICENSE-2.0
  6. #
  7. # Unless required by applicable law or agreed to in writing, software
  8. # distributed under the License is distributed on an "AS IS" BASIS,
  9. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. # See the License for the specific language governing permissions and
  11. # limitations under the License.
  12. #
  13. import os
  14. from copy import deepcopy
  15. import onnxruntime as ort
  16. from huggingface_hub import snapshot_download
  17. from .operators import *
  18. from rag.settings import cron_logger
  19. class Recognizer(object):
  20. def __init__(self, label_list, task_name, model_dir=None):
  21. """
  22. If you have trouble downloading HuggingFace models, -_^ this might help!!
  23. For Linux:
  24. export HF_ENDPOINT=https://hf-mirror.com
  25. For Windows:
  26. Good luck
  27. ^_-
  28. """
  29. if not model_dir:
  30. model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
  31. model_file_path = os.path.join(model_dir, task_name + ".onnx")
  32. if not os.path.exists(model_file_path):
  33. raise ValueError("not find model file path {}".format(
  34. model_file_path))
  35. if False and ort.get_device() == "GPU":
  36. options = ort.SessionOptions()
  37. options.enable_cpu_mem_arena = False
  38. self.ort_sess = ort.InferenceSession(model_file_path, options=options, providers=[('CUDAExecutionProvider')])
  39. else:
  40. self.ort_sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider'])
  41. self.input_names = [node.name for node in self.ort_sess.get_inputs()]
  42. self.output_names = [node.name for node in self.ort_sess.get_outputs()]
  43. self.input_shape = self.ort_sess.get_inputs()[0].shape[2:4]
  44. self.label_list = label_list
  45. @staticmethod
  46. def sort_Y_firstly(arr, threashold):
  47. # sort using y1 first and then x1
  48. arr = sorted(arr, key=lambda r: (r["top"], r["x0"]))
  49. for i in range(len(arr) - 1):
  50. for j in range(i, -1, -1):
  51. # restore the order using th
  52. if abs(arr[j + 1]["top"] - arr[j]["top"]) < threashold \
  53. and arr[j + 1]["x0"] < arr[j]["x0"]:
  54. tmp = deepcopy(arr[j])
  55. arr[j] = deepcopy(arr[j + 1])
  56. arr[j + 1] = deepcopy(tmp)
  57. return arr
  58. @staticmethod
  59. def sort_X_firstly(arr, threashold, copy=True):
  60. # sort using y1 first and then x1
  61. arr = sorted(arr, key=lambda r: (r["x0"], r["top"]))
  62. for i in range(len(arr) - 1):
  63. for j in range(i, -1, -1):
  64. # restore the order using th
  65. if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threashold \
  66. and arr[j + 1]["top"] < arr[j]["top"]:
  67. tmp = deepcopy(arr[j]) if copy else arr[j]
  68. arr[j] = deepcopy(arr[j + 1]) if copy else arr[j + 1]
  69. arr[j + 1] = deepcopy(tmp) if copy else tmp
  70. return arr
  71. @staticmethod
  72. def sort_C_firstly(arr, thr=0):
  73. # sort using y1 first and then x1
  74. # sorted(arr, key=lambda r: (r["x0"], r["top"]))
  75. arr = Recognizer.sort_X_firstly(arr, thr)
  76. for i in range(len(arr) - 1):
  77. for j in range(i, -1, -1):
  78. # restore the order using th
  79. if "C" not in arr[j] or "C" not in arr[j + 1]:
  80. continue
  81. if arr[j + 1]["C"] < arr[j]["C"] \
  82. or (
  83. arr[j + 1]["C"] == arr[j]["C"]
  84. and arr[j + 1]["top"] < arr[j]["top"]
  85. ):
  86. tmp = arr[j]
  87. arr[j] = arr[j + 1]
  88. arr[j + 1] = tmp
  89. return arr
  90. return sorted(arr, key=lambda r: (r.get("C", r["x0"]), r["top"]))
  91. @staticmethod
  92. def sort_R_firstly(arr, thr=0):
  93. # sort using y1 first and then x1
  94. # sorted(arr, key=lambda r: (r["top"], r["x0"]))
  95. arr = Recognizer.sort_Y_firstly(arr, thr)
  96. for i in range(len(arr) - 1):
  97. for j in range(i, -1, -1):
  98. if "R" not in arr[j] or "R" not in arr[j + 1]:
  99. continue
  100. if arr[j + 1]["R"] < arr[j]["R"] \
  101. or (
  102. arr[j + 1]["R"] == arr[j]["R"]
  103. and arr[j + 1]["x0"] < arr[j]["x0"]
  104. ):
  105. tmp = arr[j]
  106. arr[j] = arr[j + 1]
  107. arr[j + 1] = tmp
  108. return arr
  109. @staticmethod
  110. def overlapped_area(a, b, ratio=True):
  111. tp, btm, x0, x1 = a["top"], a["bottom"], a["x0"], a["x1"]
  112. if b["x0"] > x1 or b["x1"] < x0:
  113. return 0
  114. if b["bottom"] < tp or b["top"] > btm:
  115. return 0
  116. x0_ = max(b["x0"], x0)
  117. x1_ = min(b["x1"], x1)
  118. assert x0_ <= x1_, "Fuckedup! T:{},B:{},X0:{},X1:{} ==> {}".format(
  119. tp, btm, x0, x1, b)
  120. tp_ = max(b["top"], tp)
  121. btm_ = min(b["bottom"], btm)
  122. assert tp_ <= btm_, "Fuckedup! T:{},B:{},X0:{},X1:{} => {}".format(
  123. tp, btm, x0, x1, b)
  124. ov = (btm_ - tp_) * (x1_ - x0_) if x1 - \
  125. x0 != 0 and btm - tp != 0 else 0
  126. if ov > 0 and ratio:
  127. ov /= (x1 - x0) * (btm - tp)
  128. return ov
  129. @staticmethod
  130. def layouts_cleanup(boxes, layouts, far=2, thr=0.7):
  131. def notOverlapped(a, b):
  132. return any([a["x1"] < b["x0"],
  133. a["x0"] > b["x1"],
  134. a["bottom"] < b["top"],
  135. a["top"] > b["bottom"]])
  136. i = 0
  137. while i + 1 < len(layouts):
  138. j = i + 1
  139. while j < min(i + far, len(layouts)) \
  140. and (layouts[i].get("type", "") != layouts[j].get("type", "")
  141. or notOverlapped(layouts[i], layouts[j])):
  142. j += 1
  143. if j >= min(i + far, len(layouts)):
  144. i += 1
  145. continue
  146. if Recognizer.overlapped_area(layouts[i], layouts[j]) < thr \
  147. and Recognizer.overlapped_area(layouts[j], layouts[i]) < thr:
  148. i += 1
  149. continue
  150. if layouts[i].get("score") and layouts[j].get("score"):
  151. if layouts[i]["score"] > layouts[j]["score"]:
  152. layouts.pop(j)
  153. else:
  154. layouts.pop(i)
  155. continue
  156. area_i, area_i_1 = 0, 0
  157. for b in boxes:
  158. if not notOverlapped(b, layouts[i]):
  159. area_i += Recognizer.overlapped_area(b, layouts[i], False)
  160. if not notOverlapped(b, layouts[j]):
  161. area_i_1 += Recognizer.overlapped_area(b, layouts[j], False)
  162. if area_i > area_i_1:
  163. layouts.pop(j)
  164. else:
  165. layouts.pop(i)
  166. return layouts
  167. def create_inputs(self, imgs, im_info):
  168. """generate input for different model type
  169. Args:
  170. imgs (list(numpy)): list of images (np.ndarray)
  171. im_info (list(dict)): list of image info
  172. Returns:
  173. inputs (dict): input of model
  174. """
  175. inputs = {}
  176. im_shape = []
  177. scale_factor = []
  178. if len(imgs) == 1:
  179. inputs['image'] = np.array((imgs[0],)).astype('float32')
  180. inputs['im_shape'] = np.array(
  181. (im_info[0]['im_shape'],)).astype('float32')
  182. inputs['scale_factor'] = np.array(
  183. (im_info[0]['scale_factor'],)).astype('float32')
  184. return inputs
  185. for e in im_info:
  186. im_shape.append(np.array((e['im_shape'],)).astype('float32'))
  187. scale_factor.append(np.array((e['scale_factor'],)).astype('float32'))
  188. inputs['im_shape'] = np.concatenate(im_shape, axis=0)
  189. inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
  190. imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
  191. max_shape_h = max([e[0] for e in imgs_shape])
  192. max_shape_w = max([e[1] for e in imgs_shape])
  193. padding_imgs = []
  194. for img in imgs:
  195. im_c, im_h, im_w = img.shape[:]
  196. padding_im = np.zeros(
  197. (im_c, max_shape_h, max_shape_w), dtype=np.float32)
  198. padding_im[:, :im_h, :im_w] = img
  199. padding_imgs.append(padding_im)
  200. inputs['image'] = np.stack(padding_imgs, axis=0)
  201. return inputs
  202. @staticmethod
  203. def find_overlapped(box, boxes_sorted_by_y, naive=False):
  204. if not boxes_sorted_by_y:
  205. return
  206. bxs = boxes_sorted_by_y
  207. s, e, ii = 0, len(bxs), 0
  208. while s < e and not naive:
  209. ii = (e + s) // 2
  210. pv = bxs[ii]
  211. if box["bottom"] < pv["top"]:
  212. e = ii
  213. continue
  214. if box["top"] > pv["bottom"]:
  215. s = ii + 1
  216. continue
  217. break
  218. while s < ii:
  219. if box["top"] > bxs[s]["bottom"]:
  220. s += 1
  221. break
  222. while e - 1 > ii:
  223. if box["bottom"] < bxs[e - 1]["top"]:
  224. e -= 1
  225. break
  226. max_overlaped_i, max_overlaped = None, 0
  227. for i in range(s, e):
  228. ov = Recognizer.overlapped_area(bxs[i], box)
  229. if ov <= max_overlaped:
  230. continue
  231. max_overlaped_i = i
  232. max_overlaped = ov
  233. return max_overlaped_i
  234. @staticmethod
  235. def find_horizontally_tightest_fit(box, boxes):
  236. if not boxes:
  237. return
  238. min_dis, min_i = 1000000, None
  239. for i,b in enumerate(boxes):
  240. if box.get("layoutno", "0") != b.get("layoutno", "0"): continue
  241. dis = min(abs(box["x0"] - b["x0"]), abs(box["x1"] - b["x1"]), abs(box["x0"]+box["x1"] - b["x1"] - b["x0"])/2)
  242. if dis < min_dis:
  243. min_i = i
  244. min_dis = dis
  245. return min_i
  246. @staticmethod
  247. def find_overlapped_with_threashold(box, boxes, thr=0.3):
  248. if not boxes:
  249. return
  250. max_overlapped_i, max_overlapped, _max_overlapped = None, thr, 0
  251. s, e = 0, len(boxes)
  252. for i in range(s, e):
  253. ov = Recognizer.overlapped_area(box, boxes[i])
  254. _ov = Recognizer.overlapped_area(boxes[i], box)
  255. if (ov, _ov) < (max_overlapped, _max_overlapped):
  256. continue
  257. max_overlapped_i = i
  258. max_overlapped = ov
  259. _max_overlapped = _ov
  260. return max_overlapped_i
  261. def preprocess(self, image_list):
  262. inputs = []
  263. if "scale_factor" in self.input_names:
  264. preprocess_ops = []
  265. for op_info in [
  266. {'interp': 2, 'keep_ratio': False, 'target_size': [800, 608], 'type': 'LinearResize'},
  267. {'is_scale': True, 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'type': 'StandardizeImage'},
  268. {'type': 'Permute'},
  269. {'stride': 32, 'type': 'PadStride'}
  270. ]:
  271. new_op_info = op_info.copy()
  272. op_type = new_op_info.pop('type')
  273. preprocess_ops.append(eval(op_type)(**new_op_info))
  274. for im_path in image_list:
  275. im, im_info = preprocess(im_path, preprocess_ops)
  276. inputs.append({"image": np.array((im,)).astype('float32'),
  277. "scale_factor": np.array((im_info["scale_factor"],)).astype('float32')})
  278. else:
  279. hh, ww = self.input_shape
  280. for img in image_list:
  281. h, w = img.shape[:2]
  282. img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
  283. img = cv2.resize(np.array(img).astype('float32'), (ww, hh))
  284. # Scale input pixel values to 0 to 1
  285. img /= 255.0
  286. img = img.transpose(2, 0, 1)
  287. img = img[np.newaxis, :, :, :].astype(np.float32)
  288. inputs.append({self.input_names[0]: img, "scale_factor": [w/ww, h/hh]})
  289. return inputs
  290. def postprocess(self, boxes, inputs, thr):
  291. if "scale_factor" in self.input_names:
  292. bb = []
  293. for b in boxes:
  294. clsid, bbox, score = int(b[0]), b[2:], b[1]
  295. if score < thr:
  296. continue
  297. if clsid >= len(self.label_list):
  298. cron_logger.warning(f"bad category id")
  299. continue
  300. bb.append({
  301. "type": self.label_list[clsid].lower(),
  302. "bbox": [float(t) for t in bbox.tolist()],
  303. "score": float(score)
  304. })
  305. return bb
  306. def xywh2xyxy(x):
  307. # [x, y, w, h] to [x1, y1, x2, y2]
  308. y = np.copy(x)
  309. y[:, 0] = x[:, 0] - x[:, 2] / 2
  310. y[:, 1] = x[:, 1] - x[:, 3] / 2
  311. y[:, 2] = x[:, 0] + x[:, 2] / 2
  312. y[:, 3] = x[:, 1] + x[:, 3] / 2
  313. return y
  314. def compute_iou(box, boxes):
  315. # Compute xmin, ymin, xmax, ymax for both boxes
  316. xmin = np.maximum(box[0], boxes[:, 0])
  317. ymin = np.maximum(box[1], boxes[:, 1])
  318. xmax = np.minimum(box[2], boxes[:, 2])
  319. ymax = np.minimum(box[3], boxes[:, 3])
  320. # Compute intersection area
  321. intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
  322. # Compute union area
  323. box_area = (box[2] - box[0]) * (box[3] - box[1])
  324. boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
  325. union_area = box_area + boxes_area - intersection_area
  326. # Compute IoU
  327. iou = intersection_area / union_area
  328. return iou
  329. def iou_filter(boxes, scores, iou_threshold):
  330. sorted_indices = np.argsort(scores)[::-1]
  331. keep_boxes = []
  332. while sorted_indices.size > 0:
  333. # Pick the last box
  334. box_id = sorted_indices[0]
  335. keep_boxes.append(box_id)
  336. # Compute IoU of the picked box with the rest
  337. ious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
  338. # Remove boxes with IoU over the threshold
  339. keep_indices = np.where(ious < iou_threshold)[0]
  340. # print(keep_indices.shape, sorted_indices.shape)
  341. sorted_indices = sorted_indices[keep_indices + 1]
  342. return keep_boxes
  343. boxes = np.squeeze(boxes).T
  344. # Filter out object confidence scores below threshold
  345. scores = np.max(boxes[:, 4:], axis=1)
  346. boxes = boxes[scores > thr, :]
  347. scores = scores[scores > thr]
  348. if len(boxes) == 0: return []
  349. # Get the class with the highest confidence
  350. class_ids = np.argmax(boxes[:, 4:], axis=1)
  351. boxes = boxes[:, :4]
  352. input_shape = np.array([inputs["scale_factor"][0], inputs["scale_factor"][1], inputs["scale_factor"][0], inputs["scale_factor"][1]])
  353. boxes = np.multiply(boxes, input_shape, dtype=np.float32)
  354. boxes = xywh2xyxy(boxes)
  355. unique_class_ids = np.unique(class_ids)
  356. indices = []
  357. for class_id in unique_class_ids:
  358. class_indices = np.where(class_ids == class_id)[0]
  359. class_boxes = boxes[class_indices, :]
  360. class_scores = scores[class_indices]
  361. class_keep_boxes = iou_filter(class_boxes, class_scores, 0.2)
  362. indices.extend(class_indices[class_keep_boxes])
  363. return [{
  364. "type": self.label_list[class_ids[i]].lower(),
  365. "bbox": [float(t) for t in boxes[i].tolist()],
  366. "score": float(scores[i])
  367. } for i in indices]
  368. def __call__(self, image_list, thr=0.7, batch_size=16):
  369. res = []
  370. imgs = []
  371. for i in range(len(image_list)):
  372. if not isinstance(image_list[i], np.ndarray):
  373. imgs.append(np.array(image_list[i]))
  374. else: imgs.append(image_list[i])
  375. batch_loop_cnt = math.ceil(float(len(imgs)) / batch_size)
  376. for i in range(batch_loop_cnt):
  377. start_index = i * batch_size
  378. end_index = min((i + 1) * batch_size, len(imgs))
  379. batch_image_list = imgs[start_index:end_index]
  380. inputs = self.preprocess(batch_image_list)
  381. print("preprocess")
  382. for ins in inputs:
  383. bb = self.postprocess(self.ort_sess.run(None, {k:v for k,v in ins.items() if k in self.input_names})[0], ins, thr)
  384. res.append(bb)
  385. #seeit.save_results(image_list, res, self.label_list, threshold=thr)
  386. return res