- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import base64
 - import json
 - import os
 - from abc import ABC
 - from copy import deepcopy
 - from io import BytesIO
 - from urllib.parse import urljoin
 - import requests
 - from openai import OpenAI
 - from openai.lib.azure import AzureOpenAI
 - from zhipuai import ZhipuAI
 - from rag.nlp import is_english
 - from rag.prompts import vision_llm_describe_prompt
 - from rag.utils import num_tokens_from_string
 - 
 - 
 - class Base(ABC):
 -     def __init__(self, **kwargs):
 -         # Configure retry parameters
 -         self.max_retries = kwargs.get("max_retries", int(os.environ.get("LLM_MAX_RETRIES", 5)))
 -         self.base_delay = kwargs.get("retry_interval", float(os.environ.get("LLM_BASE_DELAY", 2.0)))
 -         self.max_rounds = kwargs.get("max_rounds", 5)
 -         self.is_tools = False
 -         self.tools = []
 -         self.toolcall_sessions = {}
 - 
 -     def describe(self, image):
 -         raise NotImplementedError("Please implement encode method!")
 - 
 -     def describe_with_prompt(self, image, prompt=None):
 -         raise NotImplementedError("Please implement encode method!")
 - 
 -     def _form_history(self, system, history, images=[]):
 -         hist = []
 -         if system:
 -             hist.append({"role": "system", "content": system})
 -         for h in history:
 -             if images and h["role"] == "user":
 -                 h["content"] = self._image_prompt(h["content"], images)
 -                 images = []
 -             hist.append(h)
 -         return hist
 - 
 -     def _image_prompt(self, text, images):
 -         if not images:
 -             return text
 - 
 -         if isinstance(images, str) or "bytes" in type(images).__name__:
 -             images = [images]
 - 
 -         pmpt = [{"type": "text", "text": text}]
 -         for img in images:
 -             pmpt.append({
 -                 "type": "image_url",
 -                 "image_url": {
 -                     "url": f"data:image/jpeg;base64,{img}" if img[:4] != "data" else img
 -                 }
 -             })
 -         return pmpt
 - 
 -     def chat(self, system, history, gen_conf, images=[], **kwargs):
 -         try:
 -             response = self.client.chat.completions.create(
 -                 model=self.model_name,
 -                 messages=self._form_history(system, history, images)
 -             )
 -             return response.choices[0].message.content.strip(), response.usage.total_tokens
 -         except Exception as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf, images=[], **kwargs):
 -         ans = ""
 -         tk_count = 0
 -         try:
 -             response = self.client.chat.completions.create(
 -                 model=self.model_name,
 -                 messages=self._form_history(system, history, images),
 -                 stream=True
 -             )
 -             for resp in response:
 -                 if not resp.choices[0].delta.content:
 -                     continue
 -                 delta = resp.choices[0].delta.content
 -                 ans = delta
 -                 if resp.choices[0].finish_reason == "length":
 -                     ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 -                 if resp.choices[0].finish_reason == "stop":
 -                     tk_count += resp.usage.total_tokens
 -                 yield ans
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield tk_count
 - 
 -     @staticmethod
 -     def image2base64(image):
 -         if isinstance(image, bytes):
 -             return base64.b64encode(image).decode("utf-8")
 -         if isinstance(image, BytesIO):
 -             return base64.b64encode(image.getvalue()).decode("utf-8")
 -         buffered = BytesIO()
 -         try:
 -             image.save(buffered, format="JPEG")
 -         except Exception:
 -             image.save(buffered, format="PNG")
 -         return base64.b64encode(buffered.getvalue()).decode("utf-8")
 - 
 -     def prompt(self, b64):
 -         return [
 -             {
 -                 "role": "user",
 -                 "content": self._image_prompt(
 -                     "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
 -                     if self.lang.lower() == "chinese"
 -                     else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
 -                     b64
 -                 )
 -             }
 -         ]
 - 
 -     def vision_llm_prompt(self, b64, prompt=None):
 -         return [
 -             {
 -                 "role": "user",
 -                 "content": self._image_prompt(prompt if prompt else vision_llm_describe_prompt(), b64)
 -             }
 -         ]
 - 
 - 
 - class GptV4(Base):
 -     _FACTORY_NAME = "OpenAI"
 - 
 -     def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1", **kwargs):
 -         if not base_url:
 -             base_url = "https://api.openai.com/v1"
 -         self.client = OpenAI(api_key=key, base_url=base_url)
 -         self.model_name = model_name
 -         self.lang = lang
 -         super().__init__(**kwargs)
 - 
 -     def describe(self, image):
 -         b64 = self.image2base64(image)
 -         res = self.client.chat.completions.create(
 -             model=self.model_name,
 -             messages=self.prompt(b64),
 -         )
 -         return res.choices[0].message.content.strip(), res.usage.total_tokens
 - 
 -     def describe_with_prompt(self, image, prompt=None):
 -         b64 = self.image2base64(image)
 -         res = self.client.chat.completions.create(
 -             model=self.model_name,
 -             messages=self.vision_llm_prompt(b64, prompt),
 -         )
 -         return res.choices[0].message.content.strip(), res.usage.total_tokens
 - 
 - 
 - class AzureGptV4(GptV4):
 -     _FACTORY_NAME = "Azure-OpenAI"
 - 
 -     def __init__(self, key, model_name, lang="Chinese", **kwargs):
 -         api_key = json.loads(key).get("api_key", "")
 -         api_version = json.loads(key).get("api_version", "2024-02-01")
 -         self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
 -         self.model_name = model_name
 -         self.lang = lang
 -         Base.__init__(self, **kwargs)
 - 
 - 
 - class xAICV(GptV4):
 -     _FACTORY_NAME = "xAI"
 - 
 -     def __init__(self, key, model_name="grok-3", lang="Chinese", base_url=None, **kwargs):
 -         if not base_url:
 -             base_url = "https://api.x.ai/v1"
 -         super().__init__(key, model_name, lang=lang, base_url=base_url, **kwargs)
 - 
 - 
 - class QWenCV(GptV4):
 -     _FACTORY_NAME = "Tongyi-Qianwen"
 - 
 -     def __init__(self, key, model_name="qwen-vl-chat-v1", lang="Chinese", base_url=None, **kwargs):
 -         if not base_url:
 -             base_url = "https://dashscope.aliyuncs.com/compatible-mode/v1"
 -         super().__init__(key, model_name, lang=lang, base_url=base_url, **kwargs)
 - 
 - 
 - class HunyuanCV(GptV4):
 -     _FACTORY_NAME = "Tencent Hunyuan"
 - 
 -     def __init__(self, key, model_name, lang="Chinese", base_url=None, **kwargs):
 -         if not base_url:
 -             base_url = "https://api.hunyuan.cloud.tencent.com/v1"
 -         super().__init__(key, model_name, lang=lang, base_url=base_url, **kwargs)
 - 
 - 
 - class Zhipu4V(GptV4):
 -     _FACTORY_NAME = "ZHIPU-AI"
 - 
 -     def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
 -         self.client = ZhipuAI(api_key=key)
 -         self.model_name = model_name
 -         self.lang = lang
 -         Base.__init__(self, **kwargs)
 - 
 - 
 - class StepFunCV(GptV4):
 -     _FACTORY_NAME = "StepFun"
 - 
 -     def __init__(self, key, model_name="step-1v-8k", lang="Chinese", base_url="https://api.stepfun.com/v1", **kwargs):
 -         if not base_url:
 -             base_url = "https://api.stepfun.com/v1"
 -         self.client = OpenAI(api_key=key, base_url=base_url)
 -         self.model_name = model_name
 -         self.lang = lang
 -         Base.__init__(self, **kwargs)
 - 
 - 
 - class LmStudioCV(GptV4):
 -     _FACTORY_NAME = "LM-Studio"
 - 
 -     def __init__(self, key, model_name, lang="Chinese", base_url="", **kwargs):
 -         if not base_url:
 -             raise ValueError("Local llm url cannot be None")
 -         base_url = urljoin(base_url, "v1")
 -         self.client = OpenAI(api_key="lm-studio", base_url=base_url)
 -         self.model_name = model_name
 -         self.lang = lang
 -         Base.__init__(self, **kwargs)
 - 
 - 
 - class OpenAI_APICV(GptV4):
 -     _FACTORY_NAME = ["VLLM", "OpenAI-API-Compatible"]
 - 
 -     def __init__(self, key, model_name, lang="Chinese", base_url="", **kwargs):
 -         if not base_url:
 -             raise ValueError("url cannot be None")
 -         base_url = urljoin(base_url, "v1")
 -         self.client = OpenAI(api_key=key, base_url=base_url)
 -         self.model_name = model_name.split("___")[0]
 -         self.lang = lang
 -         Base.__init__(self, **kwargs)
 - 
 - 
 - class TogetherAICV(GptV4):
 -     _FACTORY_NAME = "TogetherAI"
 - 
 -     def __init__(self, key, model_name, lang="Chinese", base_url="https://api.together.xyz/v1", **kwargs):
 -         if not base_url:
 -             base_url = "https://api.together.xyz/v1"
 -         super().__init__(key, model_name, lang, base_url, **kwargs)
 - 
 - 
 - class YiCV(GptV4):
 -     _FACTORY_NAME = "01.AI"
 - 
 -     def __init__(
 -             self,
 -             key,
 -             model_name,
 -             lang="Chinese",
 -             base_url="https://api.lingyiwanwu.com/v1", **kwargs
 -     ):
 -         if not base_url:
 -             base_url = "https://api.lingyiwanwu.com/v1"
 -         super().__init__(key, model_name, lang, base_url, **kwargs)
 - 
 - 
 - class SILICONFLOWCV(GptV4):
 -     _FACTORY_NAME = "SILICONFLOW"
 - 
 -     def __init__(
 -             self,
 -             key,
 -             model_name,
 -             lang="Chinese",
 -             base_url="https://api.siliconflow.cn/v1", **kwargs
 -     ):
 -         if not base_url:
 -             base_url = "https://api.siliconflow.cn/v1"
 -         super().__init__(key, model_name, lang, base_url, **kwargs)
 - 
 - 
 - class OpenRouterCV(GptV4):
 -     _FACTORY_NAME = "OpenRouter"
 - 
 -     def __init__(
 -             self,
 -             key,
 -             model_name,
 -             lang="Chinese",
 -             base_url="https://openrouter.ai/api/v1", **kwargs
 -     ):
 -         if not base_url:
 -             base_url = "https://openrouter.ai/api/v1"
 -         self.client = OpenAI(api_key=key, base_url=base_url)
 -         self.model_name = model_name
 -         self.lang = lang
 -         Base.__init__(self, **kwargs)
 - 
 - 
 - class LocalAICV(GptV4):
 -     _FACTORY_NAME = "LocalAI"
 - 
 -     def __init__(self, key, model_name, base_url, lang="Chinese", **kwargs):
 -         if not base_url:
 -             raise ValueError("Local cv model url cannot be None")
 -         base_url = urljoin(base_url, "v1")
 -         self.client = OpenAI(api_key="empty", base_url=base_url)
 -         self.model_name = model_name.split("___")[0]
 -         self.lang = lang
 -         Base.__init__(self, **kwargs)
 - 
 - 
 - class XinferenceCV(GptV4):
 -     _FACTORY_NAME = "Xinference"
 - 
 -     def __init__(self, key, model_name="", lang="Chinese", base_url="", **kwargs):
 -         base_url = urljoin(base_url, "v1")
 -         self.client = OpenAI(api_key=key, base_url=base_url)
 -         self.model_name = model_name
 -         self.lang = lang
 -         Base.__init__(self, **kwargs)
 - 
 - 
 - class GPUStackCV(GptV4):
 -     _FACTORY_NAME = "GPUStack"
 - 
 -     def __init__(self, key, model_name, lang="Chinese", base_url="", **kwargs):
 -         if not base_url:
 -             raise ValueError("Local llm url cannot be None")
 -         base_url = urljoin(base_url, "v1")
 -         self.client = OpenAI(api_key=key, base_url=base_url)
 -         self.model_name = model_name
 -         self.lang = lang
 -         Base.__init__(self, **kwargs)
 - 
 - 
 - class LocalCV(Base):
 -     _FACTORY_NAME = "Moonshot"
 - 
 -     def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
 -         pass
 - 
 -     def describe(self, image):
 -         return "", 0
 - 
 - 
 - class OllamaCV(Base):
 -     _FACTORY_NAME = "Ollama"
 - 
 -     def __init__(self, key, model_name, lang="Chinese", **kwargs):
 -         from ollama import Client
 -         self.client = Client(host=kwargs["base_url"])
 -         self.model_name = model_name
 -         self.lang = lang
 -         self.keep_alive = kwargs.get("ollama_keep_alive", int(os.environ.get("OLLAMA_KEEP_ALIVE", -1)))
 -         Base.__init__(self, **kwargs)
 - 
 -     def _clean_conf(self, gen_conf):
 -         options = {}
 -         if "temperature" in gen_conf:
 -             options["temperature"] = gen_conf["temperature"]
 -         if "top_p" in gen_conf:
 -             options["top_k"] = gen_conf["top_p"]
 -         if "presence_penalty" in gen_conf:
 -             options["presence_penalty"] = gen_conf["presence_penalty"]
 -         if "frequency_penalty" in gen_conf:
 -             options["frequency_penalty"] = gen_conf["frequency_penalty"]
 -         return options
 - 
 -     def _form_history(self, system, history, images=[]):
 -         hist = deepcopy(history)
 -         if system and hist[0]["role"] == "user":
 -             hist.insert(0, {"role": "system", "content": system})
 -         if not images:
 -             return hist
 -         for his in hist:
 -             if his["role"] == "user":
 -                 his["images"] = images
 -                 break
 -         return hist
 - 
 -     def describe(self, image):
 -         prompt = self.prompt("")
 -         try:
 -             response = self.client.generate(
 -                 model=self.model_name,
 -                 prompt=prompt[0]["content"][0]["text"],
 -                 images=[image],
 -             )
 -             ans = response["response"].strip()
 -             return ans, 128
 -         except Exception as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def describe_with_prompt(self, image, prompt=None):
 -         vision_prompt = self.vision_llm_prompt("", prompt) if prompt else self.vision_llm_prompt("")
 -         try:
 -             response = self.client.generate(
 -                 model=self.model_name,
 -                 prompt=vision_prompt[0]["content"][0]["text"],
 -                 images=[image],
 -             )
 -             ans = response["response"].strip()
 -             return ans, 128
 -         except Exception as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def chat(self, system, history, gen_conf, images=[]):
 -         try:
 -             response = self.client.chat(
 -                 model=self.model_name,
 -                 messages=self._form_history(system, history, images),
 -                 options=self._clean_conf(gen_conf),
 -                 keep_alive=self.keep_alive
 -             )
 - 
 -             ans = response["message"]["content"].strip()
 -             return ans, response["eval_count"] + response.get("prompt_eval_count", 0)
 -         except Exception as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf, images=[]):
 -         ans = ""
 -         try:
 -             response = self.client.chat(
 -                 model=self.model_name,
 -                 messages=self._form_history(system, history, images),
 -                 stream=True,
 -                 options=self._clean_conf(gen_conf),
 -                 keep_alive=self.keep_alive
 -             )
 -             for resp in response:
 -                 if resp["done"]:
 -                     yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
 -                 ans = resp["message"]["content"]
 -                 yield ans
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 -         yield 0
 - 
 - 
 - class GeminiCV(Base):
 -     _FACTORY_NAME = "Gemini"
 - 
 -     def __init__(self, key, model_name="gemini-1.0-pro-vision-latest", lang="Chinese", **kwargs):
 -         from google.generativeai import GenerativeModel, client
 - 
 -         client.configure(api_key=key)
 -         _client = client.get_default_generative_client()
 -         self.model_name = model_name
 -         self.model = GenerativeModel(model_name=self.model_name)
 -         self.model._client = _client
 -         self.lang = lang
 -         Base.__init__(self, **kwargs)
 - 
 -     def _form_history(self, system, history, images=[]):
 -         hist = []
 -         if system:
 -             hist.append({"role": "user", "parts": [system, history[0]["content"]]})
 -         for img in images:
 -             hist[0]["parts"].append(("data:image/jpeg;base64," + img) if img[:4]!="data" else img)
 -         for h in history[1:]:
 -             hist.append({"role": "user" if h["role"]=="user" else "model", "parts": [h["content"]]})
 -         return hist
 - 
 -     def describe(self, image):
 -         from PIL.Image import open
 - 
 -         prompt = (
 -             "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
 -             if self.lang.lower() == "chinese"
 -             else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
 -         )
 -         b64 = self.image2base64(image)
 -         img = open(BytesIO(base64.b64decode(b64)))
 -         input = [prompt, img]
 -         res = self.model.generate_content(input)
 -         img.close()
 -         return res.text, res.usage_metadata.total_token_count
 - 
 -     def describe_with_prompt(self, image, prompt=None):
 -         from PIL.Image import open
 - 
 -         b64 = self.image2base64(image)
 -         vision_prompt = prompt if prompt else vision_llm_describe_prompt()
 -         img = open(BytesIO(base64.b64decode(b64)))
 -         input = [vision_prompt, img]
 -         res = self.model.generate_content(
 -             input,
 -         )
 -         img.close()
 -         return res.text, res.usage_metadata.total_token_count
 - 
 -     def chat(self, system, history, gen_conf, images=[]):
 -         from transformers import GenerationConfig
 -         try:
 -             response = self.model.generate_content(
 -                 self._form_history(system, history, images),
 -                 generation_config=GenerationConfig(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7)))
 -             ans = response.text
 -             return ans, response.usage_metadata.total_token_count
 -         except Exception as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf, images=[]):
 -         from transformers import GenerationConfig
 -         ans = ""
 -         response = None
 -         try:
 -             response = self.model.generate_content(
 -                 self._form_history(system, history, images),
 -                 generation_config=GenerationConfig(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7)),
 -                 stream=True,
 -             )
 - 
 -             for resp in response:
 -                 if not resp.text:
 -                     continue
 -                 ans = resp.text
 -                 yield ans
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         if response and hasattr(response, "usage_metadata") and hasattr(response.usage_metadata, "total_token_count"):
 -             yield response.usage_metadata.total_token_count
 -         else:
 -             yield 0
 -             
 - 
 - class NvidiaCV(Base):
 -     _FACTORY_NAME = "NVIDIA"
 - 
 -     def __init__(
 -         self,
 -         key,
 -         model_name,
 -         lang="Chinese",
 -         base_url="https://ai.api.nvidia.com/v1/vlm", **kwargs
 -     ):
 -         if not base_url:
 -             base_url = ("https://ai.api.nvidia.com/v1/vlm",)
 -         self.lang = lang
 -         factory, llm_name = model_name.split("/")
 -         if factory != "liuhaotian":
 -             self.base_url = urljoin(base_url, f"{factory}/{llm_name}")
 -         else:
 -             self.base_url = urljoin(f"{base_url}/community", llm_name.replace("-v1.6", "16"))
 -         self.key = key
 -         Base.__init__(self, **kwargs)
 - 
 -     def _image_prompt(self, text, images):
 -         if not images:
 -             return text
 -         htmls = ""
 -         for img in images:
 -             htmls += ' <img src="{}"/>'.format(f"data:image/jpeg;base64,{img}" if img[:4] != "data" else img)
 -         return text + htmls
 - 
 -     def describe(self, image):
 -         b64 = self.image2base64(image)
 -         response = requests.post(
 -             url=self.base_url,
 -             headers={
 -                 "accept": "application/json",
 -                 "content-type": "application/json",
 -                 "Authorization": f"Bearer {self.key}",
 -             },
 -             json={"messages": self.prompt(b64)},
 -         )
 -         response = response.json()
 -         return (
 -             response["choices"][0]["message"]["content"].strip(),
 -             response["usage"]["total_tokens"],
 -         )
 - 
 -     def _request(self, msg, gen_conf={}):
 -         response = requests.post(
 -             url=self.base_url,
 -             headers={
 -                 "accept": "application/json",
 -                 "content-type": "application/json",
 -                 "Authorization": f"Bearer {self.key}",
 -             },
 -             json={
 -                 "messages": msg, **gen_conf
 -             },
 -         )
 -         return response.json()
 - 
 -     def describe_with_prompt(self, image, prompt=None):
 -         b64 = self.image2base64(image)
 -         vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
 -         response = self._request(vision_prompt)
 -         return (
 -             response["choices"][0]["message"]["content"].strip(),
 -             response["usage"]["total_tokens"],
 -         )
 - 
 -     def chat(self, system, history, gen_conf, images=[], **kwargs):
 -         try:
 -             response = self._request(self._form_history(system, history, images), gen_conf)
 -             return (
 -                 response["choices"][0]["message"]["content"].strip(),
 -                 response["usage"]["total_tokens"],
 -             )
 -         except Exception as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf, images=[], **kwargs):
 -         total_tokens = 0
 -         try:
 -             response = self._request(self._form_history(system, history, images), gen_conf)
 -             cnt = response["choices"][0]["message"]["content"]
 -             if "usage" in response and "total_tokens" in response["usage"]:
 -                 total_tokens += response["usage"]["total_tokens"]
 -             for resp in cnt:
 -                 yield resp
 -         except Exception as e:
 -             yield "\n**ERROR**: " + str(e)
 - 
 -         yield total_tokens
 - 
 - 
 - class AnthropicCV(Base):
 -     _FACTORY_NAME = "Anthropic"
 - 
 -     def __init__(self, key, model_name, base_url=None, **kwargs):
 -         import anthropic
 - 
 -         self.client = anthropic.Anthropic(api_key=key)
 -         self.model_name = model_name
 -         self.system = ""
 -         self.max_tokens = 8192
 -         if "haiku" in self.model_name or "opus" in self.model_name:
 -             self.max_tokens = 4096
 -         Base.__init__(self, **kwargs)
 - 
 -     def _image_prompt(self, text, images):
 -         if not images:
 -             return text
 -         pmpt = [{"type": "text", "text": text}]
 -         for img in images:
 -             pmpt.append({
 -                         "type": "image",
 -                         "source": {
 -                             "type": "base64",
 -                             "media_type": "image/jpeg" if img[:4] != "data" else img.split(":")[1].split(";")[0],
 -                             "data": img if img[:4] != "data" else img.split(",")[1]
 -                         },
 -                     }
 -             )
 -         return pmpt
 - 
 -     def describe(self, image):
 -         b64 = self.image2base64(image)
 -         response = self.client.messages.create(model=self.model_name, max_tokens=self.max_tokens, messages=self.prompt(b64))
 -         return response["content"][0]["text"].strip(), response["usage"]["input_tokens"] + response["usage"]["output_tokens"]
 - 
 -     def describe_with_prompt(self, image, prompt=None):
 -         b64 = self.image2base64(image)
 -         prompt = self.prompt(b64, prompt if prompt else vision_llm_describe_prompt())
 - 
 -         response = self.client.messages.create(model=self.model_name, max_tokens=self.max_tokens, messages=prompt)
 -         return response["content"][0]["text"].strip(), response["usage"]["input_tokens"] + response["usage"]["output_tokens"]
 - 
 -     def _clean_conf(self, gen_conf):
 -         if "presence_penalty" in gen_conf:
 -             del gen_conf["presence_penalty"]
 -         if "frequency_penalty" in gen_conf:
 -             del gen_conf["frequency_penalty"]
 -         if "max_token" in gen_conf:
 -             gen_conf["max_tokens"] = self.max_tokens
 -         return gen_conf
 - 
 -     def chat(self, system, history, gen_conf, images=[]):
 -         gen_conf = self._clean_conf(gen_conf)
 -         ans = ""
 -         try:
 -             response = self.client.messages.create(
 -                 model=self.model_name,
 -                 messages=self._form_history(system, history, images),
 -                 system=system,
 -                 stream=False,
 -                 **gen_conf,
 -             ).to_dict()
 -             ans = response["content"][0]["text"]
 -             if response["stop_reason"] == "max_tokens":
 -                 ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 -             return (
 -                 ans,
 -                 response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
 -             )
 -         except Exception as e:
 -             return ans + "\n**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf, images=[]):
 -         gen_conf = self._clean_conf(gen_conf)
 -         total_tokens = 0
 -         try:
 -             response = self.client.messages.create(
 -                 model=self.model_name,
 -                 messages=self._form_history(system, history, images),
 -                 system=system,
 -                 stream=True,
 -                 **gen_conf,
 -             )
 -             think = False
 -             for res in response:
 -                 if res.type == "content_block_delta":
 -                     if res.delta.type == "thinking_delta" and res.delta.thinking:
 -                         if not think:
 -                             yield "<think>"
 -                             think = True
 -                         yield res.delta.thinking
 -                         total_tokens += num_tokens_from_string(res.delta.thinking)
 -                     elif think:
 -                         yield "</think>"
 -                     else:
 -                         yield res.delta.text
 -                         total_tokens += num_tokens_from_string(res.delta.text)
 -         except Exception as e:
 -             yield "\n**ERROR**: " + str(e)
 - 
 -         yield total_tokens
 - 
 - 
 - class GoogleCV(AnthropicCV, GeminiCV):
 -     _FACTORY_NAME = "Google Cloud"
 - 
 -     def __init__(self, key, model_name, lang="Chinese", base_url=None, **kwargs):
 -         import base64
 - 
 -         from google.oauth2 import service_account
 - 
 -         key = json.loads(key)
 -         access_token = json.loads(base64.b64decode(key.get("google_service_account_key", "")))
 -         project_id = key.get("google_project_id", "")
 -         region = key.get("google_region", "")
 - 
 -         scopes = ["https://www.googleapis.com/auth/cloud-platform"]
 -         self.model_name = model_name
 -         self.lang = lang
 - 
 -         if "claude" in self.model_name:
 -             from anthropic import AnthropicVertex
 -             from google.auth.transport.requests import Request
 - 
 -             if access_token:
 -                 credits = service_account.Credentials.from_service_account_info(access_token, scopes=scopes)
 -                 request = Request()
 -                 credits.refresh(request)
 -                 token = credits.token
 -                 self.client = AnthropicVertex(region=region, project_id=project_id, access_token=token)
 -             else:
 -                 self.client = AnthropicVertex(region=region, project_id=project_id)
 -         else:
 -             import vertexai.generative_models as glm
 -             from google.cloud import aiplatform
 - 
 -             if access_token:
 -                 credits = service_account.Credentials.from_service_account_info(access_token)
 -                 aiplatform.init(credentials=credits, project=project_id, location=region)
 -             else:
 -                 aiplatform.init(project=project_id, location=region)
 -             self.client = glm.GenerativeModel(model_name=self.model_name)
 -         Base.__init__(self, **kwargs)
 - 
 -     def describe(self, image):
 -         if "claude" in self.model_name:
 -             return AnthropicCV.describe(self, image)
 -         else:
 -             return GeminiCV.describe(self, image)
 - 
 -     def describe_with_prompt(self, image, prompt=None):
 -         if "claude" in self.model_name:
 -             return AnthropicCV.describe_with_prompt(self, image, prompt)
 -         else:
 -             return GeminiCV.describe_with_prompt(self, image, prompt)
 - 
 -     def chat(self, system, history, gen_conf, images=[]):
 -         if "claude" in self.model_name:
 -             return AnthropicCV.chat(self, system, history, gen_conf, images)
 -         else:
 -             return GeminiCV.chat(self, system, history, gen_conf, images)
 - 
 -     def chat_streamly(self, system, history, gen_conf, images=[]):
 -         if "claude" in self.model_name:
 -             for ans in AnthropicCV.chat_streamly(self, system, history, gen_conf, images):
 -                 yield ans
 -         else:
 -             for ans in GeminiCV.chat_streamly(self, system, history, gen_conf, images):
 -                 yield ans
 
 
  |