- #
 - #  Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - 
 - import copy
 - import re
 - from io import BytesIO
 - from xpinyin import Pinyin
 - import numpy as np
 - import pandas as pd
 - from collections import Counter
 - 
 - # from openpyxl import load_workbook, Workbook
 - from dateutil.parser import parse as datetime_parse
 - 
 - from api.db.services.knowledgebase_service import KnowledgebaseService
 - from deepdoc.parser.utils import get_text
 - from rag.nlp import rag_tokenizer, tokenize
 - from deepdoc.parser import ExcelParser
 - 
 - 
 - class Excel(ExcelParser):
 -     def __call__(self, fnm, binary=None, from_page=0, to_page=10000000000, callback=None):
 -         if not binary:
 -             wb = Excel._load_excel_to_workbook(fnm)
 -         else:
 -             wb = Excel._load_excel_to_workbook(BytesIO(binary))
 -         total = 0
 -         for sheetname in wb.sheetnames:
 -             total += len(list(wb[sheetname].rows))
 - 
 -         res, fails, done = [], [], 0
 -         rn = 0
 -         for sheetname in wb.sheetnames:
 -             ws = wb[sheetname]
 -             rows = list(ws.rows)
 -             if not rows:
 -                 continue
 -             headers = [cell.value for cell in rows[0]]
 -             missed = set([i for i, h in enumerate(headers) if h is None])
 -             headers = [cell.value for i, cell in enumerate(rows[0]) if i not in missed]
 -             if not headers:
 -                 continue
 -             data = []
 -             for i, r in enumerate(rows[1:]):
 -                 rn += 1
 -                 if rn - 1 < from_page:
 -                     continue
 -                 if rn - 1 >= to_page:
 -                     break
 -                 row = [cell.value for ii, cell in enumerate(r) if ii not in missed]
 -                 if len(row) != len(headers):
 -                     fails.append(str(i))
 -                     continue
 -                 data.append(row)
 -                 done += 1
 -             if np.array(data).size == 0:
 -                 continue
 -             res.append(pd.DataFrame(np.array(data), columns=headers))
 - 
 -         callback(0.3, ("Extract records: {}~{}".format(from_page + 1, min(to_page, from_page + rn)) + (f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
 -         return res
 - 
 - 
 - def trans_datatime(s):
 -     try:
 -         return datetime_parse(s.strip()).strftime("%Y-%m-%d %H:%M:%S")
 -     except Exception:
 -         pass
 - 
 - 
 - def trans_bool(s):
 -     if re.match(r"(true|yes|是|\*|✓|✔|☑|✅|√)$", str(s).strip(), flags=re.IGNORECASE):
 -         return "yes"
 -     if re.match(r"(false|no|否|⍻|×)$", str(s).strip(), flags=re.IGNORECASE):
 -         return "no"
 - 
 - 
 - def column_data_type(arr):
 -     arr = list(arr)
 -     counts = {"int": 0, "float": 0, "text": 0, "datetime": 0, "bool": 0}
 -     trans = {t: f for f, t in [(int, "int"), (float, "float"), (trans_datatime, "datetime"), (trans_bool, "bool"), (str, "text")]}
 -     for a in arr:
 -         if a is None:
 -             continue
 -         if re.match(r"[+-]?[0-9]{,19}(\.0+)?$", str(a).replace("%%", "")):
 -             counts["int"] += 1
 -         elif re.match(r"[+-]?[0-9.]{,19}$", str(a).replace("%%", "")):
 -             counts["float"] += 1
 -         elif re.match(r"(true|yes|是|\*|✓|✔|☑|✅|√|false|no|否|⍻|×)$", str(a), flags=re.IGNORECASE):
 -             counts["bool"] += 1
 -         elif trans_datatime(str(a)):
 -             counts["datetime"] += 1
 -         else:
 -             counts["text"] += 1
 -     counts = sorted(counts.items(), key=lambda x: x[1] * -1)
 -     ty = counts[0][0]
 -     for i in range(len(arr)):
 -         if arr[i] is None:
 -             continue
 -         try:
 -             arr[i] = trans[ty](str(arr[i]))
 -         except Exception:
 -             arr[i] = None
 -     # if ty == "text":
 -     #    if len(arr) > 128 and uni / len(arr) < 0.1:
 -     #        ty = "keyword"
 -     return arr, ty
 - 
 - 
 - def chunk(filename, binary=None, from_page=0, to_page=10000000000, lang="Chinese", callback=None, **kwargs):
 -     """
 -     Excel and csv(txt) format files are supported.
 -     For csv or txt file, the delimiter between columns is TAB.
 -     The first line must be column headers.
 -     Column headers must be meaningful terms inorder to make our NLP model understanding.
 -     It's good to enumerate some synonyms using slash '/' to separate, and even better to
 -     enumerate values using brackets like 'gender/sex(male, female)'.
 -     Here are some examples for headers:
 -         1. supplier/vendor\tcolor(yellow, red, brown)\tgender/sex(male, female)\tsize(M,L,XL,XXL)
 -         2. 姓名/名字\t电话/手机/微信\t最高学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)
 - 
 -     Every row in table will be treated as a chunk.
 -     """
 - 
 -     if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
 -         callback(0.1, "Start to parse.")
 -         excel_parser = Excel()
 -         dfs = excel_parser(filename, binary, from_page=from_page, to_page=to_page, callback=callback)
 -     elif re.search(r"\.(txt|csv)$", filename, re.IGNORECASE):
 -         callback(0.1, "Start to parse.")
 -         txt = get_text(filename, binary)
 -         lines = txt.split("\n")
 -         fails = []
 -         headers = lines[0].split(kwargs.get("delimiter", "\t"))
 -         rows = []
 -         for i, line in enumerate(lines[1:]):
 -             if i < from_page:
 -                 continue
 -             if i >= to_page:
 -                 break
 -             row = [field for field in line.split(kwargs.get("delimiter", "\t"))]
 -             if len(row) != len(headers):
 -                 fails.append(str(i))
 -                 continue
 -             rows.append(row)
 - 
 -         callback(0.3, ("Extract records: {}~{}".format(from_page, min(len(lines), to_page)) + (f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
 - 
 -         dfs = [pd.DataFrame(np.array(rows), columns=headers)]
 - 
 -     else:
 -         raise NotImplementedError("file type not supported yet(excel, text, csv supported)")
 - 
 -     res = []
 -     PY = Pinyin()
 -     fieds_map = {"text": "_tks", "int": "_long", "keyword": "_kwd", "float": "_flt", "datetime": "_dt", "bool": "_kwd"}
 -     for df in dfs:
 -         for n in ["id", "_id", "index", "idx"]:
 -             if n in df.columns:
 -                 del df[n]
 -         clmns = df.columns.values
 -         if len(clmns) != len(set(clmns)):
 -             col_counts = Counter(clmns)
 -             duplicates = [col for col, count in col_counts.items() if count > 1]
 -             if duplicates:
 -                 raise ValueError(f"Duplicate column names detected: {duplicates}\nFrom: {clmns}")
 - 
 -         txts = list(copy.deepcopy(clmns))
 -         py_clmns = [PY.get_pinyins(re.sub(r"(/.*|([^()]+?)|\([^()]+?\))", "", str(n)), "_")[0] for n in clmns]
 -         clmn_tys = []
 -         for j in range(len(clmns)):
 -             cln, ty = column_data_type(df[clmns[j]])
 -             clmn_tys.append(ty)
 -             df[clmns[j]] = cln
 -             if ty == "text":
 -                 txts.extend([str(c) for c in cln if c])
 -         clmns_map = [(py_clmns[i].lower() + fieds_map[clmn_tys[i]], str(clmns[i]).replace("_", " ")) for i in range(len(clmns))]
 - 
 -         eng = lang.lower() == "english"  # is_english(txts)
 -         for ii, row in df.iterrows():
 -             d = {"docnm_kwd": filename, "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))}
 -             row_txt = []
 -             for j in range(len(clmns)):
 -                 if row[clmns[j]] is None:
 -                     continue
 -                 if not str(row[clmns[j]]):
 -                     continue
 -                 if not isinstance(row[clmns[j]], pd.Series) and pd.isna(row[clmns[j]]):
 -                     continue
 -                 fld = clmns_map[j][0]
 -                 d[fld] = row[clmns[j]] if clmn_tys[j] != "text" else rag_tokenizer.tokenize(row[clmns[j]])
 -                 row_txt.append("{}:{}".format(clmns[j], row[clmns[j]]))
 -             if not row_txt:
 -                 continue
 -             tokenize(d, "; ".join(row_txt), eng)
 -             res.append(d)
 - 
 -         KnowledgebaseService.update_parser_config(kwargs["kb_id"], {"field_map": {k: v for k, v in clmns_map}})
 -     callback(0.35, "")
 - 
 -     return res
 - 
 - 
 - if __name__ == "__main__":
 -     import sys
 - 
 -     def dummy(prog=None, msg=""):
 -         pass
 - 
 -     chunk(sys.argv[1], callback=dummy)
 
 
  |