- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import logging
 - import binascii
 - import time
 - from functools import partial
 - import re
 - from copy import deepcopy
 - from timeit import default_timer as timer
 - from agentic_reasoning import DeepResearcher
 - from api.db import LLMType, ParserType, StatusEnum
 - from api.db.db_models import Dialog, DB
 - from api.db.services.common_service import CommonService
 - from api.db.services.knowledgebase_service import KnowledgebaseService
 - from api.db.services.llm_service import TenantLLMService, LLMBundle
 - from api import settings
 - from rag.app.resume import forbidden_select_fields4resume
 - from rag.app.tag import label_question
 - from rag.nlp.search import index_name
 - from rag.prompts import kb_prompt, message_fit_in, llm_id2llm_type, keyword_extraction, full_question, chunks_format
 - from rag.utils import rmSpace, num_tokens_from_string
 - from rag.utils.tavily_conn import Tavily
 - 
 - 
 - class DialogService(CommonService):
 -     model = Dialog
 - 
 -     @classmethod
 -     @DB.connection_context()
 -     def get_list(cls, tenant_id,
 -                  page_number, items_per_page, orderby, desc, id, name):
 -         chats = cls.model.select()
 -         if id:
 -             chats = chats.where(cls.model.id == id)
 -         if name:
 -             chats = chats.where(cls.model.name == name)
 -         chats = chats.where(
 -             (cls.model.tenant_id == tenant_id)
 -             & (cls.model.status == StatusEnum.VALID.value)
 -         )
 -         if desc:
 -             chats = chats.order_by(cls.model.getter_by(orderby).desc())
 -         else:
 -             chats = chats.order_by(cls.model.getter_by(orderby).asc())
 - 
 -         chats = chats.paginate(page_number, items_per_page)
 - 
 -         return list(chats.dicts())
 - 
 - 
 - def chat_solo(dialog, messages, stream=True):
 -     if llm_id2llm_type(dialog.llm_id) == "image2text":
 -         chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
 -     else:
 -         chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
 - 
 -     prompt_config = dialog.prompt_config
 -     tts_mdl = None
 -     if prompt_config.get("tts"):
 -         tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS)
 -     msg = [{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])}
 -            for m in messages if m["role"] != "system"]
 -     if stream:
 -         last_ans = ""
 -         for ans in chat_mdl.chat_streamly(prompt_config.get("system", ""), msg, dialog.llm_setting):
 -             answer = ans
 -             delta_ans = ans[len(last_ans):]
 -             if num_tokens_from_string(delta_ans) < 16:
 -                 continue
 -             last_ans = answer
 -             yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans), "prompt": "", "created_at": time.time()}
 -         if delta_ans:
 -             yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans), "prompt": "", "created_at": time.time()}
 -     else:
 -         answer = chat_mdl.chat(prompt_config.get("system", ""), msg, dialog.llm_setting)
 -         user_content = msg[-1].get("content", "[content not available]")
 -         logging.debug("User: {}|Assistant: {}".format(user_content, answer))
 -         yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, answer), "prompt": "", "created_at": time.time()}
 - 
 - 
 - def chat(dialog, messages, stream=True, **kwargs):
 -     assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
 -     if not dialog.kb_ids:
 -         for ans in chat_solo(dialog, messages, stream):
 -             yield ans
 -         return
 - 
 -     chat_start_ts = timer()
 - 
 -     if llm_id2llm_type(dialog.llm_id) == "image2text":
 -         llm_model_config = TenantLLMService.get_model_config(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
 -     else:
 -         llm_model_config = TenantLLMService.get_model_config(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
 - 
 -     max_tokens = llm_model_config.get("max_tokens", 8192)
 - 
 -     check_llm_ts = timer()
 - 
 -     kbs = KnowledgebaseService.get_by_ids(dialog.kb_ids)
 -     embedding_list = list(set([kb.embd_id for kb in kbs]))
 -     if len(embedding_list) != 1:
 -         yield {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
 -         return {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
 - 
 -     embedding_model_name = embedding_list[0]
 - 
 -     retriever = settings.retrievaler
 - 
 -     questions = [m["content"] for m in messages if m["role"] == "user"][-3:]
 -     attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None
 -     if "doc_ids" in messages[-1]:
 -         attachments = messages[-1]["doc_ids"]
 - 
 -     create_retriever_ts = timer()
 - 
 -     embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embedding_model_name)
 -     if not embd_mdl:
 -         raise LookupError("Embedding model(%s) not found" % embedding_model_name)
 - 
 -     bind_embedding_ts = timer()
 - 
 -     if llm_id2llm_type(dialog.llm_id) == "image2text":
 -         chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
 -     else:
 -         chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
 - 
 -     bind_llm_ts = timer()
 - 
 -     prompt_config = dialog.prompt_config
 -     field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
 -     tts_mdl = None
 -     if prompt_config.get("tts"):
 -         tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS)
 -     # try to use sql if field mapping is good to go
 -     if field_map:
 -         logging.debug("Use SQL to retrieval:{}".format(questions[-1]))
 -         ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True))
 -         if ans:
 -             yield ans
 -             return
 - 
 -     for p in prompt_config["parameters"]:
 -         if p["key"] == "knowledge":
 -             continue
 -         if p["key"] not in kwargs and not p["optional"]:
 -             raise KeyError("Miss parameter: " + p["key"])
 -         if p["key"] not in kwargs:
 -             prompt_config["system"] = prompt_config["system"].replace(
 -                 "{%s}" % p["key"], " ")
 - 
 -     if len(questions) > 1 and prompt_config.get("refine_multiturn"):
 -         questions = [full_question(dialog.tenant_id, dialog.llm_id, messages)]
 -     else:
 -         questions = questions[-1:]
 - 
 -     refine_question_ts = timer()
 - 
 -     rerank_mdl = None
 -     if dialog.rerank_id:
 -         rerank_mdl = LLMBundle(dialog.tenant_id, LLMType.RERANK, dialog.rerank_id)
 - 
 -     bind_reranker_ts = timer()
 -     generate_keyword_ts = bind_reranker_ts
 -     thought = ""
 -     kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
 - 
 -     if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
 -         knowledges = []
 -     else:
 -         if prompt_config.get("keyword", False):
 -             questions[-1] += keyword_extraction(chat_mdl, questions[-1])
 -             generate_keyword_ts = timer()
 - 
 -         tenant_ids = list(set([kb.tenant_id for kb in kbs]))
 - 
 -         knowledges = []
 -         if prompt_config.get("reasoning", False):
 -             reasoner = DeepResearcher(chat_mdl,
 -                                       prompt_config,
 -                                       partial(retriever.retrieval, embd_mdl=embd_mdl, tenant_ids=tenant_ids, kb_ids=dialog.kb_ids, page=1, page_size=dialog.top_n, similarity_threshold=0.2, vector_similarity_weight=0.3))
 - 
 -             for think in reasoner.thinking(kbinfos, " ".join(questions)):
 -                 if isinstance(think, str):
 -                     thought = think
 -                     knowledges = [t for t in think.split("\n") if t]
 -                 elif stream:
 -                     yield think
 -         else:
 -             kbinfos = retriever.retrieval(" ".join(questions), embd_mdl, tenant_ids, dialog.kb_ids, 1, dialog.top_n,
 -                                           dialog.similarity_threshold,
 -                                           dialog.vector_similarity_weight,
 -                                           doc_ids=attachments,
 -                                           top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl,
 -                                           rank_feature=label_question(" ".join(questions), kbs)
 -                                           )
 -             if prompt_config.get("tavily_api_key"):
 -                 tav = Tavily(prompt_config["tavily_api_key"])
 -                 tav_res = tav.retrieve_chunks(" ".join(questions))
 -                 kbinfos["chunks"].extend(tav_res["chunks"])
 -                 kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
 -             if prompt_config.get("use_kg"):
 -                 ck = settings.kg_retrievaler.retrieval(" ".join(questions),
 -                                                        tenant_ids,
 -                                                        dialog.kb_ids,
 -                                                        embd_mdl,
 -                                                        LLMBundle(dialog.tenant_id, LLMType.CHAT))
 -                 if ck["content_with_weight"]:
 -                     kbinfos["chunks"].insert(0, ck)
 - 
 -             knowledges = kb_prompt(kbinfos, max_tokens)
 - 
 -     logging.debug(
 -         "{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
 - 
 -     retrieval_ts = timer()
 -     if not knowledges and prompt_config.get("empty_response"):
 -         empty_res = prompt_config["empty_response"]
 -         yield {"answer": empty_res, "reference": kbinfos, "audio_binary": tts(tts_mdl, empty_res)}
 -         return {"answer": prompt_config["empty_response"], "reference": kbinfos}
 - 
 -     kwargs["knowledge"] = "\n------\n" + "\n\n------\n\n".join(knowledges)
 -     gen_conf = dialog.llm_setting
 - 
 -     msg = [{"role": "system", "content": prompt_config["system"].format(**kwargs)}]
 -     msg.extend([{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])}
 -                 for m in messages if m["role"] != "system"])
 -     used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.97))
 -     assert len(msg) >= 2, f"message_fit_in has bug: {msg}"
 -     prompt = msg[0]["content"]
 - 
 -     if "max_tokens" in gen_conf:
 -         gen_conf["max_tokens"] = min(
 -             gen_conf["max_tokens"],
 -             max_tokens - used_token_count)
 - 
 -     def decorate_answer(answer):
 -         nonlocal prompt_config, knowledges, kwargs, kbinfos, prompt, retrieval_ts, questions
 - 
 -         refs = []
 -         ans = answer.split("</think>")
 -         think = ""
 -         if len(ans) == 2:
 -             think = ans[0] + "</think>"
 -             answer = ans[1]
 -         if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
 -             answer, idx = retriever.insert_citations(answer,
 -                                                      [ck["content_ltks"]
 -                                                       for ck in kbinfos["chunks"]],
 -                                                      [ck["vector"]
 -                                                       for ck in kbinfos["chunks"]],
 -                                                      embd_mdl,
 -                                                      tkweight=1 - dialog.vector_similarity_weight,
 -                                                      vtweight=dialog.vector_similarity_weight)
 -             idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
 -             recall_docs = [
 -                 d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
 -             if not recall_docs:
 -                 recall_docs = kbinfos["doc_aggs"]
 -             kbinfos["doc_aggs"] = recall_docs
 - 
 -             refs = deepcopy(kbinfos)
 -             for c in refs["chunks"]:
 -                 if c.get("vector"):
 -                     del c["vector"]
 - 
 -         if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
 -             answer += " Please set LLM API-Key in 'User Setting -> Model providers -> API-Key'"
 -         finish_chat_ts = timer()
 - 
 -         total_time_cost = (finish_chat_ts - chat_start_ts) * 1000
 -         check_llm_time_cost = (check_llm_ts - chat_start_ts) * 1000
 -         create_retriever_time_cost = (create_retriever_ts - check_llm_ts) * 1000
 -         bind_embedding_time_cost = (bind_embedding_ts - create_retriever_ts) * 1000
 -         bind_llm_time_cost = (bind_llm_ts - bind_embedding_ts) * 1000
 -         refine_question_time_cost = (refine_question_ts - bind_llm_ts) * 1000
 -         bind_reranker_time_cost = (bind_reranker_ts - refine_question_ts) * 1000
 -         generate_keyword_time_cost = (generate_keyword_ts - bind_reranker_ts) * 1000
 -         retrieval_time_cost = (retrieval_ts - generate_keyword_ts) * 1000
 -         generate_result_time_cost = (finish_chat_ts - retrieval_ts) * 1000
 - 
 -         prompt += "\n\n### Query:\n%s" % " ".join(questions)
 -         prompt = f"{prompt}\n\n - Total: {total_time_cost:.1f}ms\n  - Check LLM: {check_llm_time_cost:.1f}ms\n  - Create retriever: {create_retriever_time_cost:.1f}ms\n  - Bind embedding: {bind_embedding_time_cost:.1f}ms\n  - Bind LLM: {bind_llm_time_cost:.1f}ms\n  - Tune question: {refine_question_time_cost:.1f}ms\n  - Bind reranker: {bind_reranker_time_cost:.1f}ms\n  - Generate keyword: {generate_keyword_time_cost:.1f}ms\n  - Retrieval: {retrieval_time_cost:.1f}ms\n  - Generate answer: {generate_result_time_cost:.1f}ms"
 -         return {"answer": think+answer, "reference": refs, "prompt": re.sub(r"\n", "  \n", prompt), "created_at": time.time()}
 - 
 -     if stream:
 -         last_ans = ""
 -         answer = ""
 -         for ans in chat_mdl.chat_streamly(prompt, msg[1:], gen_conf):
 -             if thought:
 -                 ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
 -             answer = ans
 -             delta_ans = ans[len(last_ans):]
 -             if num_tokens_from_string(delta_ans) < 16:
 -                 continue
 -             last_ans = answer
 -             yield {"answer": thought+answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
 -         delta_ans = answer[len(last_ans):]
 -         if delta_ans:
 -             yield {"answer": thought+answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
 -         yield decorate_answer(thought+answer)
 -     else:
 -         answer = chat_mdl.chat(prompt, msg[1:], gen_conf)
 -         user_content = msg[-1].get("content", "[content not available]")
 -         logging.debug("User: {}|Assistant: {}".format(user_content, answer))
 -         res = decorate_answer(answer)
 -         res["audio_binary"] = tts(tts_mdl, answer)
 -         yield res
 - 
 - 
 - def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
 -     sys_prompt = "You are a Database Administrator. You need to check the fields of the following tables based on the user's list of questions and write the SQL corresponding to the last question."
 -     user_prompt = """
 - Table name: {};
 - Table of database fields are as follows:
 - {}
 - 
 - Question are as follows:
 - {}
 - Please write the SQL, only SQL, without any other explanations or text.
 - """.format(
 -         index_name(tenant_id),
 -         "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
 -         question
 -     )
 -     tried_times = 0
 - 
 -     def get_table():
 -         nonlocal sys_prompt, user_prompt, question, tried_times
 -         sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_prompt}], {
 -             "temperature": 0.06})
 -         sql = re.sub(r"<think>.*</think>", "", sql, flags=re.DOTALL)
 -         logging.debug(f"{question} ==> {user_prompt} get SQL: {sql}")
 -         sql = re.sub(r"[\r\n]+", " ", sql.lower())
 -         sql = re.sub(r".*select ", "select ", sql.lower())
 -         sql = re.sub(r" +", " ", sql)
 -         sql = re.sub(r"([;;]|```).*", "", sql)
 -         if sql[:len("select ")] != "select ":
 -             return None, None
 -         if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()):
 -             if sql[:len("select *")] != "select *":
 -                 sql = "select doc_id,docnm_kwd," + sql[6:]
 -             else:
 -                 flds = []
 -                 for k in field_map.keys():
 -                     if k in forbidden_select_fields4resume:
 -                         continue
 -                     if len(flds) > 11:
 -                         break
 -                     flds.append(k)
 -                 sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
 - 
 -         logging.debug(f"{question} get SQL(refined): {sql}")
 -         tried_times += 1
 -         return settings.retrievaler.sql_retrieval(sql, format="json"), sql
 - 
 -     tbl, sql = get_table()
 -     if tbl is None:
 -         return None
 -     if tbl.get("error") and tried_times <= 2:
 -         user_prompt = """
 -         Table name: {};
 -         Table of database fields are as follows:
 -         {}
 -         
 -         Question are as follows:
 -         {}
 -         Please write the SQL, only SQL, without any other explanations or text.
 -         
 - 
 -         The SQL error you provided last time is as follows:
 -         {}
 - 
 -         Error issued by database as follows:
 -         {}
 - 
 -         Please correct the error and write SQL again, only SQL, without any other explanations or text.
 -         """.format(
 -             index_name(tenant_id),
 -             "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
 -             question, sql, tbl["error"]
 -         )
 -         tbl, sql = get_table()
 -         logging.debug("TRY it again: {}".format(sql))
 - 
 -     logging.debug("GET table: {}".format(tbl))
 -     if tbl.get("error") or len(tbl["rows"]) == 0:
 -         return None
 - 
 -     docid_idx = set([ii for ii, c in enumerate(
 -         tbl["columns"]) if c["name"] == "doc_id"])
 -     doc_name_idx = set([ii for ii, c in enumerate(
 -         tbl["columns"]) if c["name"] == "docnm_kwd"])
 -     column_idx = [ii for ii in range(
 -         len(tbl["columns"])) if ii not in (docid_idx | doc_name_idx)]
 - 
 -     # compose Markdown table
 -     columns = "|" + "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"],
 -                                                                           tbl["columns"][i]["name"])) for i in
 -                               column_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
 - 
 -     line = "|" + "|".join(["------" for _ in range(len(column_idx))]) + \
 -            ("|------|" if docid_idx and docid_idx else "")
 - 
 -     rows = ["|" +
 -             "|".join([rmSpace(str(r[i])) for i in column_idx]).replace("None", " ") +
 -             "|" for r in tbl["rows"]]
 -     rows = [r for r in rows if re.sub(r"[ |]+", "", r)]
 -     if quota:
 -         rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
 -     else:
 -         rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
 -     rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows)
 - 
 -     if not docid_idx or not doc_name_idx:
 -         logging.warning("SQL missing field: " + sql)
 -         return {
 -             "answer": "\n".join([columns, line, rows]),
 -             "reference": {"chunks": [], "doc_aggs": []},
 -             "prompt": sys_prompt
 -         }
 - 
 -     docid_idx = list(docid_idx)[0]
 -     doc_name_idx = list(doc_name_idx)[0]
 -     doc_aggs = {}
 -     for r in tbl["rows"]:
 -         if r[docid_idx] not in doc_aggs:
 -             doc_aggs[r[docid_idx]] = {"doc_name": r[doc_name_idx], "count": 0}
 -         doc_aggs[r[docid_idx]]["count"] += 1
 -     return {
 -         "answer": "\n".join([columns, line, rows]),
 -         "reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[doc_name_idx]} for r in tbl["rows"]],
 -                       "doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in
 -                                    doc_aggs.items()]},
 -         "prompt": sys_prompt
 -     }
 - 
 - 
 - def tts(tts_mdl, text):
 -     if not tts_mdl or not text:
 -         return
 -     bin = b""
 -     for chunk in tts_mdl.tts(text):
 -         bin += chunk
 -     return binascii.hexlify(bin).decode("utf-8")
 - 
 - 
 - def ask(question, kb_ids, tenant_id):
 -     kbs = KnowledgebaseService.get_by_ids(kb_ids)
 -     embedding_list = list(set([kb.embd_id for kb in kbs]))
 - 
 -     is_knowledge_graph = all([kb.parser_id == ParserType.KG for kb in kbs])
 -     retriever = settings.retrievaler if not is_knowledge_graph else settings.kg_retrievaler
 - 
 -     embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embedding_list[0])
 -     chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
 -     max_tokens = chat_mdl.max_length
 -     tenant_ids = list(set([kb.tenant_id for kb in kbs]))
 -     kbinfos = retriever.retrieval(question, embd_mdl, tenant_ids, kb_ids,
 -                                   1, 12, 0.1, 0.3, aggs=False,
 -                                   rank_feature=label_question(question, kbs)
 -                                   )
 -     knowledges = kb_prompt(kbinfos, max_tokens)
 -     prompt = """
 -     Role: You're a smart assistant. Your name is Miss R.
 -     Task: Summarize the information from knowledge bases and answer user's question.
 -     Requirements and restriction:
 -       - DO NOT make things up, especially for numbers.
 -       - If the information from knowledge is irrelevant with user's question, JUST SAY: Sorry, no relevant information provided.
 -       - Answer with markdown format text.
 -       - Answer in language of user's question.
 -       - DO NOT make things up, especially for numbers.
 - 
 -     ### Information from knowledge bases
 -     %s
 - 
 -     The above is information from knowledge bases.
 - 
 -     """ % "\n".join(knowledges)
 -     msg = [{"role": "user", "content": question}]
 - 
 -     def decorate_answer(answer):
 -         nonlocal knowledges, kbinfos, prompt
 -         answer, idx = retriever.insert_citations(answer,
 -                                                  [ck["content_ltks"]
 -                                                   for ck in kbinfos["chunks"]],
 -                                                  [ck["vector"]
 -                                                   for ck in kbinfos["chunks"]],
 -                                                  embd_mdl,
 -                                                  tkweight=0.7,
 -                                                  vtweight=0.3)
 -         idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
 -         recall_docs = [
 -             d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
 -         if not recall_docs:
 -             recall_docs = kbinfos["doc_aggs"]
 -         kbinfos["doc_aggs"] = recall_docs
 -         refs = deepcopy(kbinfos)
 -         for c in refs["chunks"]:
 -             if c.get("vector"):
 -                 del c["vector"]
 - 
 -         if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
 -             answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
 -         refs["chunks"] = chunks_format(refs)
 -         return {"answer": answer, "reference": refs}
 - 
 -     answer = ""
 -     for ans in chat_mdl.chat_streamly(prompt, msg, {"temperature": 0.1}):
 -         answer = ans
 -         yield {"answer": answer, "reference": {}}
 -     yield decorate_answer(answer)
 
 
  |