| 
                        123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251 | 
                        - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import copy
 - import re
 - from collections import Counter
 - 
 - from api.db import ParserType
 - from rag.nlp import huqie, tokenize, tokenize_table
 - from deepdoc.parser import PdfParser
 - import numpy as np
 - from rag.utils import num_tokens_from_string
 - 
 - 
 - class Pdf(PdfParser):
 -     def __init__(self):
 -         self.model_speciess = ParserType.PAPER.value
 -         super().__init__()
 - 
 -     def __call__(self, filename, binary=None, from_page=0,
 -                  to_page=100000, zoomin=3, callback=None):
 -         self.__images__(
 -             filename if not binary else binary,
 -             zoomin,
 -             from_page,
 -             to_page)
 -         callback(0.2, "OCR finished.")
 - 
 -         from timeit import default_timer as timer
 -         start = timer()
 -         self._layouts_rec(zoomin)
 -         callback(0.47, "Layout analysis finished")
 -         print("paddle layouts:", timer() - start)
 -         self._table_transformer_job(zoomin)
 -         callback(0.68, "Table analysis finished")
 -         self._text_merge()
 -         column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
 -         self._concat_downward(concat_between_pages=False)
 -         self._filter_forpages()
 -         callback(0.75, "Text merging finished.")
 -         tbls = self._extract_table_figure(True, zoomin, False)
 - 
 -         # clean mess
 -         if column_width < self.page_images[0].size[0] / zoomin / 2:
 -             print("two_column...................", column_width,
 -                   self.page_images[0].size[0] / zoomin / 2)
 -             self.boxes = self.sort_X_by_page(self.boxes, column_width / 2)
 -         for b in self.boxes:
 -             b["text"] = re.sub(r"([\t  ]|\u3000){2,}", " ", b["text"].strip())
 -         freq = Counter([b["text"] for b in self.boxes])
 -         garbage = set([k for k, v in freq.items() if v > self.total_page * 0.6])
 -         i = 0
 -         while i < len(self.boxes):
 -             if self.boxes[i]["text"] in garbage \
 -                     or (re.match(r"[a-zA-Z0-9]+$", self.boxes[i]["text"]) and not self.boxes[i].get("layoutno")) \
 -                     or (i + 1 < len(self.boxes) and self.boxes[i]["text"] == self.boxes[i + 1]["text"]):
 -                 self.boxes.pop(i)
 -             elif i + 1 < len(self.boxes) and self.boxes[i].get("layoutno", '0') == self.boxes[i + 1].get("layoutno",
 -                                                                                                          '1'):
 -                 # merge within same layouts
 -                 self.boxes[i + 1]["top"] = self.boxes[i]["top"]
 -                 self.boxes[i + 1]["x0"] = min(self.boxes[i]["x0"], self.boxes[i + 1]["x0"])
 -                 self.boxes[i + 1]["x1"] = max(self.boxes[i]["x1"], self.boxes[i + 1]["x1"])
 -                 self.boxes[i + 1]["text"] = self.boxes[i]["text"] + " " + self.boxes[i + 1]["text"]
 -                 self.boxes.pop(i)
 -             else:
 -                 i += 1
 - 
 -         def _begin(txt):
 -             return re.match(
 -                 "[0-9. 一、i]*(introduction|abstract|摘要|引言|keywords|key words|关键词|background|背景|目录|前言|contents)",
 -                 txt.lower().strip())
 - 
 -         if from_page > 0:
 -             return {
 -                 "title":"",
 -                 "authors": "",
 -                 "abstract": "",
 -                 "lines": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes[i:] if
 -                           re.match(r"(text|title)", b.get("layoutno", "text"))],
 -                 "tables": tbls
 -             }
 -         # get title and authors
 -         title = ""
 -         authors = []
 -         i = 0
 -         while i < min(32, len(self.boxes)):
 -             b = self.boxes[i]
 -             i += 1
 -             if b.get("layoutno", "").find("title") >= 0:
 -                 title = b["text"]
 -                 if _begin(title):
 -                     title = ""
 -                     break
 -                 for j in range(3):
 -                     if _begin(self.boxes[i + j]["text"]): break
 -                     authors.append(self.boxes[i + j]["text"])
 -                     break
 -                 break
 -         # get abstract
 -         abstr = ""
 -         i = 0
 -         while i + 1 < min(32, len(self.boxes)):
 -             b = self.boxes[i]
 -             i += 1
 -             txt = b["text"].lower().strip()
 -             if re.match("(abstract|摘要)", txt):
 -                 if len(txt.split(" ")) > 32 or len(txt) > 64:
 -                     abstr = txt + self._line_tag(b, zoomin)
 -                     i += 1
 -                     break
 -                 txt = self.boxes[i + 1]["text"].lower().strip()
 -                 if len(txt.split(" ")) > 32 or len(txt) > 64:
 -                     abstr = txt + self._line_tag(self.boxes[i + 1], zoomin)
 -                 i += 1
 -                 break
 -         if not abstr: i = 0
 - 
 -         callback(0.8, "Page {}~{}: Text merging finished".format(from_page, min(to_page, self.total_page)))
 -         for b in self.boxes: print(b["text"], b.get("layoutno"))
 -         print(tbls)
 - 
 -         return {
 -             "title": title if title else filename,
 -             "authors": " ".join(authors),
 -             "abstract": abstr,
 -             "lines": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes[i:] if
 -                       re.match(r"(text|title)", b.get("layoutno", "text"))],
 -             "tables": tbls
 -         }
 - 
 - 
 - def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
 -     """
 -         Only pdf is supported.
 -         The abstract of the paper will be sliced as an entire chunk, and will not be sliced partly.
 -     """
 -     pdf_parser = None
 -     if re.search(r"\.pdf$", filename, re.IGNORECASE):
 -         pdf_parser = Pdf()
 -         paper = pdf_parser(filename if not binary else binary,
 -                            from_page=from_page, to_page=to_page, callback=callback)
 -     else: raise NotImplementedError("file type not supported yet(pdf supported)")
 -     doc = {"docnm_kwd": filename, "authors_tks": paper["authors"],
 -            "title_tks": huqie.qie(paper["title"] if paper["title"] else filename)}
 -     doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
 -     doc["authors_sm_tks"] = huqie.qieqie(doc["authors_tks"])
 -     # is it English
 -     eng = lang.lower() == "english"#pdf_parser.is_english
 -     print("It's English.....", eng)
 - 
 -     res = tokenize_table(paper["tables"], doc, eng)
 - 
 -     if paper["abstract"]:
 -         d = copy.deepcopy(doc)
 -         txt = pdf_parser.remove_tag(paper["abstract"])
 -         d["important_kwd"] = ["abstract", "总结", "概括", "summary", "summarize"]
 -         d["important_tks"] = " ".join(d["important_kwd"])
 -         d["image"] = pdf_parser.crop(paper["abstract"])
 -         tokenize(d, txt, eng)
 -         res.append(d)
 - 
 -     readed = [0] * len(paper["lines"])
 -     # find colon firstly
 -     i = 0
 -     while i + 1 < len(paper["lines"]):
 -         txt = pdf_parser.remove_tag(paper["lines"][i][0])
 -         j = i
 -         if txt.strip("\n").strip()[-1] not in "::":
 -             i += 1
 -             continue
 -         i += 1
 -         while i < len(paper["lines"]) and not paper["lines"][i][0]:
 -             i += 1
 -         if i >= len(paper["lines"]): break
 -         proj = [paper["lines"][i][0].strip()]
 -         i += 1
 -         while i < len(paper["lines"]) and paper["lines"][i][0].strip()[0] == proj[-1][0]:
 -             proj.append(paper["lines"][i])
 -             i += 1
 -         for k in range(j, i): readed[k] = True
 -         txt = txt[::-1]
 -         if eng:
 -             r = re.search(r"(.*?) ([\.;?!]|$)", txt)
 -             txt = r.group(1)[::-1] if r else txt[::-1]
 -         else:
 -             r = re.search(r"(.*?) ([。?;!]|$)", txt)
 -             txt = r.group(1)[::-1] if r else txt[::-1]
 -         for p in proj:
 -             d = copy.deepcopy(doc)
 -             txt += "\n" + pdf_parser.remove_tag(p)
 -             d["image"] = pdf_parser.crop(p)
 -             tokenize(d, txt)
 -             res.append(d)
 - 
 -     i = 0
 -     chunk = []
 -     tk_cnt = 0
 -     def add_chunk():
 -         nonlocal chunk, res, doc, pdf_parser, tk_cnt
 -         d = copy.deepcopy(doc)
 -         ck = "\n".join(chunk)
 -         tokenize(d, pdf_parser.remove_tag(ck), pdf_parser.is_english)
 -         d["image"] = pdf_parser.crop(ck)
 -         res.append(d)
 -         chunk = []
 -         tk_cnt = 0
 - 
 -     while i < len(paper["lines"]):
 -         if tk_cnt > 128:
 -             add_chunk()
 -         if readed[i]:
 -             i += 1
 -             continue
 -         readed[i] = True
 -         txt, layouts = paper["lines"][i]
 -         txt_ = pdf_parser.remove_tag(txt)
 -         i += 1
 -         cnt = num_tokens_from_string(txt_)
 -         if any([
 -             layouts.find("title") >= 0 and chunk,
 -             cnt + tk_cnt > 128 and tk_cnt > 32,
 -         ]):
 -             add_chunk()
 -             chunk = [txt]
 -             tk_cnt = cnt
 -         else:
 -             chunk.append(txt)
 -             tk_cnt += cnt
 - 
 -     if chunk: add_chunk()
 -     for i, d in enumerate(res):
 -         print(d)
 -         # d["image"].save(f"./logs/{i}.jpg")
 -     return res
 - 
 - 
 - if __name__ == "__main__":
 -     import sys
 -     def dummy(a, b):
 -         pass
 -     chunk(sys.argv[1], callback=dummy)
 
 
  |