- #
- # Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import uuid
- from collections import Counter
- from enum import auto
- from typing import Annotated, Any
-
- from flask import Request
- from pydantic import UUID1, BaseModel, Field, StringConstraints, ValidationError, field_serializer, field_validator
- from pydantic_core import PydanticCustomError
- from strenum import StrEnum
- from werkzeug.exceptions import BadRequest, UnsupportedMediaType
-
- from api.constants import DATASET_NAME_LIMIT
-
-
- def validate_and_parse_json_request(request: Request, validator: type[BaseModel], *, extras: dict[str, Any] | None = None, exclude_unset: bool = False) -> tuple[dict[str, Any] | None, str | None]:
- """
- Validates and parses JSON requests through a multi-stage validation pipeline.
-
- Implements a four-stage validation process:
- 1. Content-Type verification (must be application/json)
- 2. JSON syntax validation
- 3. Payload structure type checking
- 4. Pydantic model validation with error formatting
-
- Args:
- request (Request): Flask request object containing HTTP payload
- validator (type[BaseModel]): Pydantic model class for data validation
- extras (dict[str, Any] | None): Additional fields to merge into payload
- before validation. These fields will be removed from the final output
- exclude_unset (bool): Whether to exclude fields that have not been explicitly set
-
- Returns:
- tuple[Dict[str, Any] | None, str | None]:
- - First element:
- - Validated dictionary on success
- - None on validation failure
- - Second element:
- - None on success
- - Diagnostic error message on failure
-
- Raises:
- UnsupportedMediaType: When Content-Type header is not application/json
- BadRequest: For structural JSON syntax errors
- ValidationError: When payload violates Pydantic schema rules
-
- Examples:
- >>> validate_and_parse_json_request(valid_request, DatasetSchema)
- ({"name": "Dataset1", "format": "csv"}, None)
-
- >>> validate_and_parse_json_request(xml_request, DatasetSchema)
- (None, "Unsupported content type: Expected application/json, got text/xml")
-
- >>> validate_and_parse_json_request(bad_json_request, DatasetSchema)
- (None, "Malformed JSON syntax: Missing commas/brackets or invalid encoding")
-
- Notes:
- 1. Validation Priority:
- - Content-Type verification precedes JSON parsing
- - Structural validation occurs before schema validation
- 2. Extra fields added via `extras` parameter are automatically removed
- from the final output after validation
- """
- try:
- payload = request.get_json() or {}
- except UnsupportedMediaType:
- return None, f"Unsupported content type: Expected application/json, got {request.content_type}"
- except BadRequest:
- return None, "Malformed JSON syntax: Missing commas/brackets or invalid encoding"
-
- if not isinstance(payload, dict):
- return None, f"Invalid request payload: expected object, got {type(payload).__name__}"
-
- try:
- if extras is not None:
- payload.update(extras)
- validated_request = validator(**payload)
- except ValidationError as e:
- return None, format_validation_error_message(e)
-
- parsed_payload = validated_request.model_dump(by_alias=True, exclude_unset=exclude_unset)
-
- if extras is not None:
- for key in list(parsed_payload.keys()):
- if key in extras:
- del parsed_payload[key]
-
- return parsed_payload, None
-
-
- def format_validation_error_message(e: ValidationError) -> str:
- """
- Formats validation errors into a standardized string format.
-
- Processes pydantic ValidationError objects to create human-readable error messages
- containing field locations, error descriptions, and input values.
-
- Args:
- e (ValidationError): The validation error instance containing error details
-
- Returns:
- str: Formatted error messages joined by newlines. Each line contains:
- - Field path (dot-separated)
- - Error message
- - Truncated input value (max 128 chars)
-
- Example:
- >>> try:
- ... UserModel(name=123, email="invalid")
- ... except ValidationError as e:
- ... print(format_validation_error_message(e))
- Field: <name> - Message: <Input should be a valid string> - Value: <123>
- Field: <email> - Message: <value is not a valid email address> - Value: <invalid>
- """
- error_messages = []
-
- for error in e.errors():
- field = ".".join(map(str, error["loc"]))
- msg = error["msg"]
- input_val = error["input"]
- input_str = str(input_val)
-
- if len(input_str) > 128:
- input_str = input_str[:125] + "..."
-
- error_msg = f"Field: <{field}> - Message: <{msg}> - Value: <{input_str}>"
- error_messages.append(error_msg)
-
- return "\n".join(error_messages)
-
-
- class PermissionEnum(StrEnum):
- me = auto()
- team = auto()
-
-
- class ChunkMethodnEnum(StrEnum):
- naive = auto()
- book = auto()
- email = auto()
- laws = auto()
- manual = auto()
- one = auto()
- paper = auto()
- picture = auto()
- presentation = auto()
- qa = auto()
- table = auto()
- tag = auto()
-
-
- class GraphragMethodEnum(StrEnum):
- light = auto()
- general = auto()
-
-
- class Base(BaseModel):
- class Config:
- extra = "forbid"
-
-
- class RaptorConfig(Base):
- use_raptor: bool = Field(default=False)
- prompt: Annotated[
- str,
- StringConstraints(strip_whitespace=True, min_length=1),
- Field(
- default="Please summarize the following paragraphs. Be careful with the numbers, do not make things up. Paragraphs as following:\n {cluster_content}\nThe above is the content you need to summarize."
- ),
- ]
- max_token: int = Field(default=256, ge=1, le=2048)
- threshold: float = Field(default=0.1, ge=0.0, le=1.0)
- max_cluster: int = Field(default=64, ge=1, le=1024)
- random_seed: int = Field(default=0, ge=0)
-
-
- class GraphragConfig(Base):
- use_graphrag: bool = Field(default=False)
- entity_types: list[str] = Field(default_factory=lambda: ["organization", "person", "geo", "event", "category"])
- method: GraphragMethodEnum = Field(default=GraphragMethodEnum.light)
- community: bool = Field(default=False)
- resolution: bool = Field(default=False)
-
-
- class ParserConfig(Base):
- auto_keywords: int = Field(default=0, ge=0, le=32)
- auto_questions: int = Field(default=0, ge=0, le=10)
- chunk_token_num: int = Field(default=128, ge=1, le=2048)
- delimiter: str = Field(default=r"\n", min_length=1)
- graphrag: GraphragConfig | None = None
- html4excel: bool = False
- layout_recognize: str = "DeepDOC"
- raptor: RaptorConfig | None = None
- tag_kb_ids: list[str] = Field(default_factory=list)
- topn_tags: int = Field(default=1, ge=1, le=10)
- filename_embd_weight: float | None = Field(default=None, ge=0.0, le=1.0)
- task_page_size: int | None = Field(default=None, ge=1)
- pages: list[list[int]] | None = None
-
-
- class CreateDatasetReq(Base):
- name: Annotated[str, StringConstraints(strip_whitespace=True, min_length=1, max_length=DATASET_NAME_LIMIT), Field(...)]
- avatar: str | None = Field(default=None, max_length=65535)
- description: str | None = Field(default=None, max_length=65535)
- embedding_model: Annotated[str, StringConstraints(strip_whitespace=True, max_length=255), Field(default="", serialization_alias="embd_id")]
- permission: Annotated[PermissionEnum, StringConstraints(strip_whitespace=True, min_length=1, max_length=16), Field(default=PermissionEnum.me)]
- chunk_method: Annotated[ChunkMethodnEnum, StringConstraints(strip_whitespace=True, min_length=1, max_length=32), Field(default=ChunkMethodnEnum.naive, serialization_alias="parser_id")]
- pagerank: int = Field(default=0, ge=0, le=100)
- parser_config: ParserConfig | None = Field(default=None)
-
- @field_validator("avatar")
- @classmethod
- def validate_avatar_base64(cls, v: str | None) -> str | None:
- """
- Validates Base64-encoded avatar string format and MIME type compliance.
-
- Implements a three-stage validation workflow:
- 1. MIME prefix existence check
- 2. MIME type format validation
- 3. Supported type verification
-
- Args:
- v (str): Raw avatar field value
-
- Returns:
- str: Validated Base64 string
-
- Raises:
- PydanticCustomError: For structural errors in these cases:
- - Missing MIME prefix header
- - Invalid MIME prefix format
- - Unsupported image MIME type
-
- Example:
- ```python
- # Valid case
- CreateDatasetReq(avatar="...")
-
- # Invalid cases
- CreateDatasetReq(avatar="image/jpeg;base64,...") # Missing 'data:' prefix
- CreateDatasetReq(avatar="data:video/mp4;base64,...") # Unsupported MIME type
- ```
- """
- if v is None:
- return v
-
- if "," in v:
- prefix, _ = v.split(",", 1)
- if not prefix.startswith("data:"):
- raise PydanticCustomError("format_invalid", "Invalid MIME prefix format. Must start with 'data:'")
-
- mime_type = prefix[5:].split(";")[0]
- supported_mime_types = ["image/jpeg", "image/png"]
- if mime_type not in supported_mime_types:
- raise PydanticCustomError("format_invalid", "Unsupported MIME type. Allowed: {supported_mime_types}", {"supported_mime_types": supported_mime_types})
-
- return v
- else:
- raise PydanticCustomError("format_invalid", "Missing MIME prefix. Expected format: data:<mime>;base64,<data>")
-
- @field_validator("embedding_model", mode="after")
- @classmethod
- def validate_embedding_model(cls, v: str) -> str:
- """
- Validates embedding model identifier format compliance.
-
- Validation pipeline:
- 1. Structural format verification
- 2. Component non-empty check
- 3. Value normalization
-
- Args:
- v (str): Raw model identifier
-
- Returns:
- str: Validated <model_name>@<provider> format
-
- Raises:
- PydanticCustomError: For these violations:
- - Missing @ separator
- - Empty model_name/provider
- - Invalid component structure
-
- Examples:
- Valid: "text-embedding-3-large@openai"
- Invalid: "invalid_model" (no @)
- Invalid: "@openai" (empty model_name)
- Invalid: "text-embedding-3-large@" (empty provider)
- """
- if "@" not in v:
- raise PydanticCustomError("format_invalid", "Embedding model identifier must follow <model_name>@<provider> format")
-
- components = v.split("@", 1)
- if len(components) != 2 or not all(components):
- raise PydanticCustomError("format_invalid", "Both model_name and provider must be non-empty strings")
-
- model_name, provider = components
- if not model_name.strip() or not provider.strip():
- raise PydanticCustomError("format_invalid", "Model name and provider cannot be whitespace-only strings")
- return v
-
- @field_validator("permission", mode="before")
- @classmethod
- def permission_auto_lowercase(cls, v: Any) -> Any:
- """
- Normalize permission input to lowercase for consistent PermissionEnum matching.
-
- Args:
- v (Any): Raw input value for the permission field
-
- Returns:
- Lowercase string if input is string type, otherwise returns original value
-
- Behavior:
- - Converts string inputs to lowercase (e.g., "ME" → "me")
- - Non-string values pass through unchanged
- - Works in validation pre-processing stage (before enum conversion)
- """
- return v.lower() if isinstance(v, str) else v
-
- @field_validator("parser_config", mode="before")
- @classmethod
- def normalize_empty_parser_config(cls, v: Any) -> Any:
- """
- Normalizes empty parser configuration by converting empty dictionaries to None.
-
- This validator ensures consistent handling of empty parser configurations across
- the application by converting empty dicts to None values.
-
- Args:
- v (Any): Raw input value for the parser config field
-
- Returns:
- Any: Returns None if input is an empty dict, otherwise returns the original value
-
- Example:
- >>> normalize_empty_parser_config({})
- None
-
- >>> normalize_empty_parser_config({"key": "value"})
- {"key": "value"}
- """
- if v == {}:
- return None
- return v
-
- @field_validator("parser_config", mode="after")
- @classmethod
- def validate_parser_config_json_length(cls, v: ParserConfig | None) -> ParserConfig | None:
- """
- Validates serialized JSON length constraints for parser configuration.
-
- Implements a two-stage validation workflow:
- 1. Null check - bypass validation for empty configurations
- 2. Model serialization - convert Pydantic model to JSON string
- 3. Size verification - enforce maximum allowed payload size
-
- Args:
- v (ParserConfig | None): Raw parser configuration object
-
- Returns:
- ParserConfig | None: Validated configuration object
-
- Raises:
- PydanticCustomError: When serialized JSON exceeds 65,535 characters
- """
- if v is None:
- return None
-
- if (json_str := v.model_dump_json()) and len(json_str) > 65535:
- raise PydanticCustomError("string_too_long", "Parser config exceeds size limit (max 65,535 characters). Current size: {actual}", {"actual": len(json_str)})
- return v
-
-
- class UpdateDatasetReq(CreateDatasetReq):
- dataset_id: UUID1 = Field(...)
- name: Annotated[str, StringConstraints(strip_whitespace=True, min_length=1, max_length=DATASET_NAME_LIMIT), Field(default="")]
-
- @field_serializer("dataset_id")
- def serialize_uuid_to_hex(self, v: uuid.UUID) -> str:
- """
- Serializes a UUID version 1 object to its hexadecimal string representation.
-
- This field serializer specifically handles UUID version 1 objects, converting them
- to their canonical 32-character hexadecimal format without hyphens. The conversion
- is designed for consistent serialization in API responses and database storage.
-
- Args:
- v (uuid.UUID1): The UUID version 1 object to serialize. Must be a valid
- UUID1 instance generated by Python's uuid module.
-
- Returns:
- str: 32-character lowercase hexadecimal string representation
- Example: "550e8400e29b41d4a716446655440000"
-
- Raises:
- AttributeError: If input is not a proper UUID object (missing hex attribute)
- TypeError: If input is not a UUID1 instance (when type checking is enabled)
-
- Notes:
- - Version 1 UUIDs contain timestamp and MAC address information
- - The .hex property automatically converts to lowercase hexadecimal
- - For cross-version compatibility, consider typing as uuid.UUID instead
- """
- return v.hex
-
-
- class DeleteReq(Base):
- ids: list[UUID1] | None = Field(...)
-
- @field_validator("ids", mode="after")
- def check_duplicate_ids(cls, v: list[UUID1] | None) -> list[str] | None:
- """
- Validates and converts a list of UUID1 objects to hexadecimal strings while checking for duplicates.
-
- This validator implements a three-stage processing pipeline:
- 1. Null Handling - returns None for empty/null input
- 2. UUID Conversion - transforms UUID objects to hex strings
- 3. Duplicate Validation - ensures all IDs are unique
-
- Behavior Specifications:
- - Input: None → Returns None (indicates no operation)
- - Input: [] → Returns [] (empty list for explicit no-op)
- - Input: [UUID1,...] → Returns validated hex strings
- - Duplicates: Raises formatted PydanticCustomError
-
- Args:
- v (list[UUID1] | None):
- - None: Indicates no datasets should be processed
- - Empty list: Explicit empty operation
- - Populated list: Dataset UUIDs to validate/convert
-
- Returns:
- list[str] | None:
- - None when input is None
- - List of 32-character hex strings (lowercase, no hyphens)
- Example: ["550e8400e29b41d4a716446655440000"]
-
- Raises:
- PydanticCustomError: When duplicates detected, containing:
- - Error type: "duplicate_uuids"
- - Template message: "Duplicate ids: '{duplicate_ids}'"
- - Context: {"duplicate_ids": "id1, id2, ..."}
-
- Example:
- >>> validate([UUID("..."), UUID("...")])
- ["2cdf0456e9a711ee8000000000000000", ...]
-
- >>> validate([UUID("..."), UUID("...")]) # Duplicates
- PydanticCustomError: Duplicate ids: '2cdf0456e9a711ee8000000000000000'
- """
- if not v:
- return v
-
- uuid_hex_list = [ids.hex for ids in v]
- duplicates = [item for item, count in Counter(uuid_hex_list).items() if count > 1]
-
- if duplicates:
- duplicates_str = ", ".join(duplicates)
- raise PydanticCustomError("duplicate_uuids", "Duplicate ids: '{duplicate_ids}'", {"duplicate_ids": duplicates_str})
-
- return uuid_hex_list
-
-
- class DeleteDatasetReq(DeleteReq): ...
|