- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import json
 - import re
 - import time
 - 
 - import tiktoken
 - from flask import Response, jsonify, request
 - 
 - from agent.canvas import Canvas
 - from api.db import LLMType, StatusEnum
 - from api.db.db_models import APIToken
 - from api.db.services.api_service import API4ConversationService
 - from api.db.services.canvas_service import UserCanvasService, completionOpenAI
 - from api.db.services.canvas_service import completion as agent_completion
 - from api.db.services.conversation_service import ConversationService, iframe_completion
 - from api.db.services.conversation_service import completion as rag_completion
 - from api.db.services.dialog_service import DialogService, ask, chat
 - from api.db.services.file_service import FileService
 - from api.db.services.knowledgebase_service import KnowledgebaseService
 - from api.db.services.llm_service import LLMBundle
 - from api.utils import get_uuid
 - from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_data_result, get_result, token_required, validate_request
 - from rag.prompts import chunks_format
 - 
 - 
 - @manager.route("/chats/<chat_id>/sessions", methods=["POST"])  # noqa: F821
 - @token_required
 - def create(tenant_id, chat_id):
 -     req = request.json
 -     req["dialog_id"] = chat_id
 -     dia = DialogService.query(tenant_id=tenant_id, id=req["dialog_id"], status=StatusEnum.VALID.value)
 -     if not dia:
 -         return get_error_data_result(message="You do not own the assistant.")
 -     conv = {
 -         "id": get_uuid(),
 -         "dialog_id": req["dialog_id"],
 -         "name": req.get("name", "New session"),
 -         "message": [{"role": "assistant", "content": dia[0].prompt_config.get("prologue")}],
 -         "user_id": req.get("user_id", ""),
 -     }
 -     if not conv.get("name"):
 -         return get_error_data_result(message="`name` can not be empty.")
 -     ConversationService.save(**conv)
 -     e, conv = ConversationService.get_by_id(conv["id"])
 -     if not e:
 -         return get_error_data_result(message="Fail to create a session!")
 -     conv = conv.to_dict()
 -     conv["messages"] = conv.pop("message")
 -     conv["chat_id"] = conv.pop("dialog_id")
 -     del conv["reference"]
 -     return get_result(data=conv)
 - 
 - 
 - @manager.route("/agents/<agent_id>/sessions", methods=["POST"])  # noqa: F821
 - @token_required
 - def create_agent_session(tenant_id, agent_id):
 -     req = request.json
 -     if not request.is_json:
 -         req = request.form
 -     files = request.files
 -     user_id = request.args.get("user_id", "")
 -     e, cvs = UserCanvasService.get_by_id(agent_id)
 -     if not e:
 -         return get_error_data_result("Agent not found.")
 -     if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
 -         return get_error_data_result("You cannot access the agent.")
 -     if not isinstance(cvs.dsl, str):
 -         cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
 - 
 -     canvas = Canvas(cvs.dsl, tenant_id)
 -     canvas.reset()
 -     query = canvas.get_preset_param()
 -     if query:
 -         for ele in query:
 -             if not ele["optional"]:
 -                 if ele["type"] == "file":
 -                     if files is None or not files.get(ele["key"]):
 -                         return get_error_data_result(f"`{ele['key']}` with type `{ele['type']}` is required")
 -                     upload_file = files.get(ele["key"])
 -                     file_content = FileService.parse_docs([upload_file], user_id)
 -                     file_name = upload_file.filename
 -                     ele["value"] = file_name + "\n" + file_content
 -                 else:
 -                     if req is None or not req.get(ele["key"]):
 -                         return get_error_data_result(f"`{ele['key']}` with type `{ele['type']}` is required")
 -                     ele["value"] = req[ele["key"]]
 -             else:
 -                 if ele["type"] == "file":
 -                     if files is not None and files.get(ele["key"]):
 -                         upload_file = files.get(ele["key"])
 -                         file_content = FileService.parse_docs([upload_file], user_id)
 -                         file_name = upload_file.filename
 -                         ele["value"] = file_name + "\n" + file_content
 -                     else:
 -                         if "value" in ele:
 -                             ele.pop("value")
 -                 else:
 -                     if req is not None and req.get(ele["key"]):
 -                         ele["value"] = req[ele["key"]]
 -                     else:
 -                         if "value" in ele:
 -                             ele.pop("value")
 - 
 -     for ans in canvas.run(stream=False):
 -         pass
 - 
 -     cvs.dsl = json.loads(str(canvas))
 -     conv = {"id": get_uuid(), "dialog_id": cvs.id, "user_id": user_id, "message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl}
 -     API4ConversationService.save(**conv)
 -     conv["agent_id"] = conv.pop("dialog_id")
 -     return get_result(data=conv)
 - 
 - 
 - @manager.route("/chats/<chat_id>/sessions/<session_id>", methods=["PUT"])  # noqa: F821
 - @token_required
 - def update(tenant_id, chat_id, session_id):
 -     req = request.json
 -     req["dialog_id"] = chat_id
 -     conv_id = session_id
 -     conv = ConversationService.query(id=conv_id, dialog_id=chat_id)
 -     if not conv:
 -         return get_error_data_result(message="Session does not exist")
 -     if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
 -         return get_error_data_result(message="You do not own the session")
 -     if "message" in req or "messages" in req:
 -         return get_error_data_result(message="`message` can not be change")
 -     if "reference" in req:
 -         return get_error_data_result(message="`reference` can not be change")
 -     if "name" in req and not req.get("name"):
 -         return get_error_data_result(message="`name` can not be empty.")
 -     if not ConversationService.update_by_id(conv_id, req):
 -         return get_error_data_result(message="Session updates error")
 -     return get_result()
 - 
 - 
 - @manager.route("/chats/<chat_id>/completions", methods=["POST"])  # noqa: F821
 - @token_required
 - def chat_completion(tenant_id, chat_id):
 -     req = request.json
 -     if not req:
 -         req = {"question": ""}
 -     if not req.get("session_id"):
 -         req["question"] = ""
 -     if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
 -         return get_error_data_result(f"You don't own the chat {chat_id}")
 -     if req.get("session_id"):
 -         if not ConversationService.query(id=req["session_id"], dialog_id=chat_id):
 -             return get_error_data_result(f"You don't own the session {req['session_id']}")
 -     if req.get("stream", True):
 -         resp = Response(rag_completion(tenant_id, chat_id, **req), mimetype="text/event-stream")
 -         resp.headers.add_header("Cache-control", "no-cache")
 -         resp.headers.add_header("Connection", "keep-alive")
 -         resp.headers.add_header("X-Accel-Buffering", "no")
 -         resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
 - 
 -         return resp
 -     else:
 -         answer = None
 -         for ans in rag_completion(tenant_id, chat_id, **req):
 -             answer = ans
 -             break
 -         return get_result(data=answer)
 - 
 - 
 - @manager.route("/chats_openai/<chat_id>/chat/completions", methods=["POST"])  # noqa: F821
 - @validate_request("model", "messages")  # noqa: F821
 - @token_required
 - def chat_completion_openai_like(tenant_id, chat_id):
 -     """
 -     OpenAI-like chat completion API that simulates the behavior of OpenAI's completions endpoint.
 - 
 -     This function allows users to interact with a model and receive responses based on a series of historical messages.
 -     If `stream` is set to True (by default), the response will be streamed in chunks, mimicking the OpenAI-style API.
 -     Set `stream` to False explicitly, the response will be returned in a single complete answer.
 - 
 -     Reference:
 - 
 -     - If `stream` is True, the final answer and reference information will appear in the **last chunk** of the stream.
 -     - If `stream` is False, the reference will be included in `choices[0].message.reference`.
 - 
 -     Example usage:
 - 
 -     curl -X POST https://ragflow_address.com/api/v1/chats_openai/<chat_id>/chat/completions \
 -         -H "Content-Type: application/json" \
 -         -H "Authorization: Bearer $RAGFLOW_API_KEY" \
 -         -d '{
 -             "model": "model",
 -             "messages": [{"role": "user", "content": "Say this is a test!"}],
 -             "stream": true
 -         }'
 - 
 -     Alternatively, you can use Python's `OpenAI` client:
 - 
 -     from openai import OpenAI
 - 
 -     model = "model"
 -     client = OpenAI(api_key="ragflow-api-key", base_url=f"http://ragflow_address/api/v1/chats_openai/<chat_id>")
 - 
 -     stream = True
 -     reference = True
 - 
 -     completion = client.chat.completions.create(
 -         model=model,
 -         messages=[
 -             {"role": "system", "content": "You are a helpful assistant."},
 -             {"role": "user", "content": "Who are you?"},
 -             {"role": "assistant", "content": "I am an AI assistant named..."},
 -             {"role": "user", "content": "Can you tell me how to install neovim"},
 -         ],
 -         stream=stream,
 -         extra_body={"reference": reference}
 -     )
 - 
 -     if stream:
 -     for chunk in completion:
 -         print(chunk)
 -         if reference and chunk.choices[0].finish_reason == "stop":
 -             print(f"Reference:\n{chunk.choices[0].delta.reference}")
 -             print(f"Final content:\n{chunk.choices[0].delta.final_content}")
 -     else:
 -         print(completion.choices[0].message.content)
 -         if reference:
 -             print(completion.choices[0].message.reference)
 -     """
 -     req = request.get_json()
 - 
 -     need_reference = bool(req.get("reference", False))
 - 
 -     messages = req.get("messages", [])
 -     # To prevent empty [] input
 -     if len(messages) < 1:
 -         return get_error_data_result("You have to provide messages.")
 -     if messages[-1]["role"] != "user":
 -         return get_error_data_result("The last content of this conversation is not from user.")
 - 
 -     prompt = messages[-1]["content"]
 -     # Treat context tokens as reasoning tokens
 -     context_token_used = sum(len(message["content"]) for message in messages)
 - 
 -     dia = DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value)
 -     if not dia:
 -         return get_error_data_result(f"You don't own the chat {chat_id}")
 -     dia = dia[0]
 - 
 -     # Filter system and non-sense assistant messages
 -     msg = []
 -     for m in messages:
 -         if m["role"] == "system":
 -             continue
 -         if m["role"] == "assistant" and not msg:
 -             continue
 -         msg.append(m)
 - 
 -     # tools = get_tools()
 -     # toolcall_session = SimpleFunctionCallServer()
 -     tools = None
 -     toolcall_session = None
 - 
 -     if req.get("stream", True):
 -         # The value for the usage field on all chunks except for the last one will be null.
 -         # The usage field on the last chunk contains token usage statistics for the entire request.
 -         # The choices field on the last chunk will always be an empty array [].
 -         def streamed_response_generator(chat_id, dia, msg):
 -             token_used = 0
 -             answer_cache = ""
 -             reasoning_cache = ""
 -             last_ans = {}
 -             response = {
 -                 "id": f"chatcmpl-{chat_id}",
 -                 "choices": [
 -                     {
 -                         "delta": {
 -                             "content": "",
 -                             "role": "assistant",
 -                             "function_call": None,
 -                             "tool_calls": None,
 -                             "reasoning_content": "",
 -                         },
 -                         "finish_reason": None,
 -                         "index": 0,
 -                         "logprobs": None,
 -                     }
 -                 ],
 -                 "created": int(time.time()),
 -                 "model": "model",
 -                 "object": "chat.completion.chunk",
 -                 "system_fingerprint": "",
 -                 "usage": None,
 -             }
 - 
 -             try:
 -                 for ans in chat(dia, msg, True, toolcall_session=toolcall_session, tools=tools, quote=need_reference):
 -                     last_ans = ans
 -                     answer = ans["answer"]
 - 
 -                     reasoning_match = re.search(r"<think>(.*?)</think>", answer, flags=re.DOTALL)
 -                     if reasoning_match:
 -                         reasoning_part = reasoning_match.group(1)
 -                         content_part = answer[reasoning_match.end() :]
 -                     else:
 -                         reasoning_part = ""
 -                         content_part = answer
 - 
 -                     reasoning_incremental = ""
 -                     if reasoning_part:
 -                         if reasoning_part.startswith(reasoning_cache):
 -                             reasoning_incremental = reasoning_part.replace(reasoning_cache, "", 1)
 -                         else:
 -                             reasoning_incremental = reasoning_part
 -                         reasoning_cache = reasoning_part
 - 
 -                     content_incremental = ""
 -                     if content_part:
 -                         if content_part.startswith(answer_cache):
 -                             content_incremental = content_part.replace(answer_cache, "", 1)
 -                     else:
 -                         content_incremental = content_part
 -                     answer_cache = content_part
 - 
 -                     token_used += len(reasoning_incremental) + len(content_incremental)
 - 
 -                     if not any([reasoning_incremental, content_incremental]):
 -                         continue
 - 
 -                     if reasoning_incremental:
 -                         response["choices"][0]["delta"]["reasoning_content"] = reasoning_incremental
 -                     else:
 -                         response["choices"][0]["delta"]["reasoning_content"] = None
 - 
 -                     if content_incremental:
 -                         response["choices"][0]["delta"]["content"] = content_incremental
 -                     else:
 -                         response["choices"][0]["delta"]["content"] = None
 - 
 -                     yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
 -             except Exception as e:
 -                 response["choices"][0]["delta"]["content"] = "**ERROR**: " + str(e)
 -                 yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
 - 
 -             # The last chunk
 -             response["choices"][0]["delta"]["content"] = None
 -             response["choices"][0]["delta"]["reasoning_content"] = None
 -             response["choices"][0]["finish_reason"] = "stop"
 -             response["usage"] = {"prompt_tokens": len(prompt), "completion_tokens": token_used, "total_tokens": len(prompt) + token_used}
 -             if need_reference:
 -                 response["choices"][0]["delta"]["reference"] = chunks_format(last_ans.get("reference", []))
 -                 response["choices"][0]["delta"]["final_content"] = last_ans.get("answer", "")
 -             yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
 -             yield "data:[DONE]\n\n"
 - 
 -         resp = Response(streamed_response_generator(chat_id, dia, msg), mimetype="text/event-stream")
 -         resp.headers.add_header("Cache-control", "no-cache")
 -         resp.headers.add_header("Connection", "keep-alive")
 -         resp.headers.add_header("X-Accel-Buffering", "no")
 -         resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
 -         return resp
 -     else:
 -         answer = None
 -         for ans in chat(dia, msg, False, toolcall_session=toolcall_session, tools=tools, quote=need_reference):
 -             # focus answer content only
 -             answer = ans
 -             break
 -         content = answer["answer"]
 - 
 -         response = {
 -             "id": f"chatcmpl-{chat_id}",
 -             "object": "chat.completion",
 -             "created": int(time.time()),
 -             "model": req.get("model", ""),
 -             "usage": {
 -                 "prompt_tokens": len(prompt),
 -                 "completion_tokens": len(content),
 -                 "total_tokens": len(prompt) + len(content),
 -                 "completion_tokens_details": {
 -                     "reasoning_tokens": context_token_used,
 -                     "accepted_prediction_tokens": len(content),
 -                     "rejected_prediction_tokens": 0,  # 0 for simplicity
 -                 },
 -             },
 -             "choices": [
 -                 {
 -                     "message": {
 -                         "role": "assistant",
 -                         "content": content,
 -                     },
 -                     "logprobs": None,
 -                     "finish_reason": "stop",
 -                     "index": 0,
 -                 }
 -             ],
 -         }
 -         if need_reference:
 -             response["choices"][0]["message"]["reference"] = chunks_format(answer.get("reference", []))
 - 
 -         return jsonify(response)
 - 
 - 
 - @manager.route("/agents_openai/<agent_id>/chat/completions", methods=["POST"])  # noqa: F821
 - @validate_request("model", "messages")  # noqa: F821
 - @token_required
 - def agents_completion_openai_compatibility(tenant_id, agent_id):
 -     req = request.json
 -     tiktokenenc = tiktoken.get_encoding("cl100k_base")
 -     messages = req.get("messages", [])
 -     if not messages:
 -         return get_error_data_result("You must provide at least one message.")
 -     if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
 -         return get_error_data_result(f"You don't own the agent {agent_id}")
 - 
 -     filtered_messages = [m for m in messages if m["role"] in ["user", "assistant"]]
 -     prompt_tokens = sum(len(tiktokenenc.encode(m["content"])) for m in filtered_messages)
 -     if not filtered_messages:
 -         return jsonify(
 -             get_data_openai(
 -                 id=agent_id,
 -                 content="No valid messages found (user or assistant).",
 -                 finish_reason="stop",
 -                 model=req.get("model", ""),
 -                 completion_tokens=len(tiktokenenc.encode("No valid messages found (user or assistant).")),
 -                 prompt_tokens=prompt_tokens,
 -             )
 -         )
 - 
 -     # Get the last user message as the question
 -     question = next((m["content"] for m in reversed(messages) if m["role"] == "user"), "")
 - 
 -     if req.get("stream", True):
 -         return Response(completionOpenAI(tenant_id, agent_id, question, session_id=req.get("id", req.get("metadata", {}).get("id", "")), stream=True), mimetype="text/event-stream")
 -     else:
 -         # For non-streaming, just return the response directly
 -         response = next(completionOpenAI(tenant_id, agent_id, question, session_id=req.get("id", req.get("metadata", {}).get("id", "")), stream=False))
 -         return jsonify(response)
 - 
 - 
 - @manager.route("/agents/<agent_id>/completions", methods=["POST"])  # noqa: F821
 - @token_required
 - def agent_completions(tenant_id, agent_id):
 -     req = request.json
 -     cvs = UserCanvasService.query(user_id=tenant_id, id=agent_id)
 -     if not cvs:
 -         return get_error_data_result(f"You don't own the agent {agent_id}")
 -     if req.get("session_id"):
 -         dsl = cvs[0].dsl
 -         if not isinstance(dsl, str):
 -             dsl = json.dumps(dsl)
 - 
 -         conv = API4ConversationService.query(id=req["session_id"], dialog_id=agent_id)
 -         if not conv:
 -             return get_error_data_result(f"You don't own the session {req['session_id']}")
 -         # If an update to UserCanvas is detected, update the API4Conversation.dsl
 -         sync_dsl = req.get("sync_dsl", False)
 -         if sync_dsl is True and cvs[0].update_time > conv[0].update_time:
 -             current_dsl = conv[0].dsl
 -             new_dsl = json.loads(dsl)
 -             state_fields = ["history", "messages", "path", "reference"]
 -             states = {field: current_dsl.get(field, []) for field in state_fields}
 -             current_dsl.update(new_dsl)
 -             current_dsl.update(states)
 -             API4ConversationService.update_by_id(req["session_id"], {"dsl": current_dsl})
 -     else:
 -         req["question"] = ""
 -     if req.get("stream", True):
 -         resp = Response(agent_completion(tenant_id, agent_id, **req), mimetype="text/event-stream")
 -         resp.headers.add_header("Cache-control", "no-cache")
 -         resp.headers.add_header("Connection", "keep-alive")
 -         resp.headers.add_header("X-Accel-Buffering", "no")
 -         resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
 -         return resp
 -     try:
 -         for answer in agent_completion(tenant_id, agent_id, **req):
 -             return get_result(data=answer)
 -     except Exception as e:
 -         return get_error_data_result(str(e))
 - 
 - 
 - @manager.route("/chats/<chat_id>/sessions", methods=["GET"])  # noqa: F821
 - @token_required
 - def list_session(tenant_id, chat_id):
 -     if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
 -         return get_error_data_result(message=f"You don't own the assistant {chat_id}.")
 -     id = request.args.get("id")
 -     name = request.args.get("name")
 -     page_number = int(request.args.get("page", 1))
 -     items_per_page = int(request.args.get("page_size", 30))
 -     orderby = request.args.get("orderby", "create_time")
 -     user_id = request.args.get("user_id")
 -     if request.args.get("desc") == "False" or request.args.get("desc") == "false":
 -         desc = False
 -     else:
 -         desc = True
 -     convs = ConversationService.get_list(chat_id, page_number, items_per_page, orderby, desc, id, name, user_id)
 -     if not convs:
 -         return get_result(data=[])
 -     for conv in convs:
 -         conv["messages"] = conv.pop("message")
 -         infos = conv["messages"]
 -         for info in infos:
 -             if "prompt" in info:
 -                 info.pop("prompt")
 -         conv["chat_id"] = conv.pop("dialog_id")
 -         if conv["reference"]:
 -             messages = conv["messages"]
 -             message_num = 0
 -             while message_num < len(messages) and message_num < len(conv["reference"]):
 -                 if message_num != 0 and messages[message_num]["role"] != "user":
 -                     if message_num >= len(conv["reference"]):
 -                         break
 -                     chunk_list = []
 -                     if "chunks" in conv["reference"][message_num]:
 -                         chunks = conv["reference"][message_num]["chunks"]
 -                         for chunk in chunks:
 -                             new_chunk = {
 -                                 "id": chunk.get("chunk_id", chunk.get("id")),
 -                                 "content": chunk.get("content_with_weight", chunk.get("content")),
 -                                 "document_id": chunk.get("doc_id", chunk.get("document_id")),
 -                                 "document_name": chunk.get("docnm_kwd", chunk.get("document_name")),
 -                                 "dataset_id": chunk.get("kb_id", chunk.get("dataset_id")),
 -                                 "image_id": chunk.get("image_id", chunk.get("img_id")),
 -                                 "positions": chunk.get("positions", chunk.get("position_int")),
 -                             }
 - 
 -                             chunk_list.append(new_chunk)
 -                     messages[message_num]["reference"] = chunk_list
 -                 message_num += 1
 -         del conv["reference"]
 -     return get_result(data=convs)
 - 
 - 
 - @manager.route("/agents/<agent_id>/sessions", methods=["GET"])  # noqa: F821
 - @token_required
 - def list_agent_session(tenant_id, agent_id):
 -     if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
 -         return get_error_data_result(message=f"You don't own the agent {agent_id}.")
 -     id = request.args.get("id")
 -     user_id = request.args.get("user_id")
 -     page_number = int(request.args.get("page", 1))
 -     items_per_page = int(request.args.get("page_size", 30))
 -     orderby = request.args.get("orderby", "update_time")
 -     if request.args.get("desc") == "False" or request.args.get("desc") == "false":
 -         desc = False
 -     else:
 -         desc = True
 -     # dsl defaults to True in all cases except for False and false
 -     include_dsl = request.args.get("dsl") != "False" and request.args.get("dsl") != "false"
 -     convs = API4ConversationService.get_list(agent_id, tenant_id, page_number, items_per_page, orderby, desc, id, user_id, include_dsl)
 -     if not convs:
 -         return get_result(data=[])
 -     for conv in convs:
 -         conv["messages"] = conv.pop("message")
 -         infos = conv["messages"]
 -         for info in infos:
 -             if "prompt" in info:
 -                 info.pop("prompt")
 -         conv["agent_id"] = conv.pop("dialog_id")
 -         if conv["reference"]:
 -             messages = conv["messages"]
 -             message_num = 0
 -             chunk_num = 0
 -             while message_num < len(messages):
 -                 if message_num != 0 and messages[message_num]["role"] != "user":
 -                     chunk_list = []
 -                     if "chunks" in conv["reference"][chunk_num]:
 -                         chunks = conv["reference"][chunk_num]["chunks"]
 -                         for chunk in chunks:
 -                             new_chunk = {
 -                                 "id": chunk.get("chunk_id", chunk.get("id")),
 -                                 "content": chunk.get("content_with_weight", chunk.get("content")),
 -                                 "document_id": chunk.get("doc_id", chunk.get("document_id")),
 -                                 "document_name": chunk.get("docnm_kwd", chunk.get("document_name")),
 -                                 "dataset_id": chunk.get("kb_id", chunk.get("dataset_id")),
 -                                 "image_id": chunk.get("image_id", chunk.get("img_id")),
 -                                 "positions": chunk.get("positions", chunk.get("position_int")),
 -                             }
 -                             chunk_list.append(new_chunk)
 -                     chunk_num += 1
 -                     messages[message_num]["reference"] = chunk_list
 -                 message_num += 1
 -         del conv["reference"]
 -     return get_result(data=convs)
 - 
 - 
 - @manager.route("/chats/<chat_id>/sessions", methods=["DELETE"])  # noqa: F821
 - @token_required
 - def delete(tenant_id, chat_id):
 -     if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
 -         return get_error_data_result(message="You don't own the chat")
 - 
 -     errors = []
 -     success_count = 0
 -     req = request.json
 -     convs = ConversationService.query(dialog_id=chat_id)
 -     if not req:
 -         ids = None
 -     else:
 -         ids = req.get("ids")
 - 
 -     if not ids:
 -         conv_list = []
 -         for conv in convs:
 -             conv_list.append(conv.id)
 -     else:
 -         conv_list = ids
 - 
 -     unique_conv_ids, duplicate_messages = check_duplicate_ids(conv_list, "session")
 -     conv_list = unique_conv_ids
 - 
 -     for id in conv_list:
 -         conv = ConversationService.query(id=id, dialog_id=chat_id)
 -         if not conv:
 -             errors.append(f"The chat doesn't own the session {id}")
 -             continue
 -         ConversationService.delete_by_id(id)
 -         success_count += 1
 - 
 -     if errors:
 -         if success_count > 0:
 -             return get_result(data={"success_count": success_count, "errors": errors}, message=f"Partially deleted {success_count} sessions with {len(errors)} errors")
 -         else:
 -             return get_error_data_result(message="; ".join(errors))
 - 
 -     if duplicate_messages:
 -         if success_count > 0:
 -             return get_result(message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages})
 -         else:
 -             return get_error_data_result(message=";".join(duplicate_messages))
 - 
 -     return get_result()
 - 
 - 
 - @manager.route("/agents/<agent_id>/sessions", methods=["DELETE"])  # noqa: F821
 - @token_required
 - def delete_agent_session(tenant_id, agent_id):
 -     errors = []
 -     success_count = 0
 -     req = request.json
 -     cvs = UserCanvasService.query(user_id=tenant_id, id=agent_id)
 -     if not cvs:
 -         return get_error_data_result(f"You don't own the agent {agent_id}")
 - 
 -     convs = API4ConversationService.query(dialog_id=agent_id)
 -     if not convs:
 -         return get_error_data_result(f"Agent {agent_id} has no sessions")
 - 
 -     if not req:
 -         ids = None
 -     else:
 -         ids = req.get("ids")
 - 
 -     if not ids:
 -         conv_list = []
 -         for conv in convs:
 -             conv_list.append(conv.id)
 -     else:
 -         conv_list = ids
 - 
 -     unique_conv_ids, duplicate_messages = check_duplicate_ids(conv_list, "session")
 -     conv_list = unique_conv_ids
 - 
 -     for session_id in conv_list:
 -         conv = API4ConversationService.query(id=session_id, dialog_id=agent_id)
 -         if not conv:
 -             errors.append(f"The agent doesn't own the session {session_id}")
 -             continue
 -         API4ConversationService.delete_by_id(session_id)
 -         success_count += 1
 - 
 -     if errors:
 -         if success_count > 0:
 -             return get_result(data={"success_count": success_count, "errors": errors}, message=f"Partially deleted {success_count} sessions with {len(errors)} errors")
 -         else:
 -             return get_error_data_result(message="; ".join(errors))
 - 
 -     if duplicate_messages:
 -         if success_count > 0:
 -             return get_result(message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages})
 -         else:
 -             return get_error_data_result(message=";".join(duplicate_messages))
 - 
 -     return get_result()
 - 
 - 
 - @manager.route("/sessions/ask", methods=["POST"])  # noqa: F821
 - @token_required
 - def ask_about(tenant_id):
 -     req = request.json
 -     if not req.get("question"):
 -         return get_error_data_result("`question` is required.")
 -     if not req.get("dataset_ids"):
 -         return get_error_data_result("`dataset_ids` is required.")
 -     if not isinstance(req.get("dataset_ids"), list):
 -         return get_error_data_result("`dataset_ids` should be a list.")
 -     req["kb_ids"] = req.pop("dataset_ids")
 -     for kb_id in req["kb_ids"]:
 -         if not KnowledgebaseService.accessible(kb_id, tenant_id):
 -             return get_error_data_result(f"You don't own the dataset {kb_id}.")
 -         kbs = KnowledgebaseService.query(id=kb_id)
 -         kb = kbs[0]
 -         if kb.chunk_num == 0:
 -             return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
 -     uid = tenant_id
 - 
 -     def stream():
 -         nonlocal req, uid
 -         try:
 -             for ans in ask(req["question"], req["kb_ids"], uid):
 -                 yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
 -         except Exception as e:
 -             yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
 -         yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
 - 
 -     resp = Response(stream(), mimetype="text/event-stream")
 -     resp.headers.add_header("Cache-control", "no-cache")
 -     resp.headers.add_header("Connection", "keep-alive")
 -     resp.headers.add_header("X-Accel-Buffering", "no")
 -     resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
 -     return resp
 - 
 - 
 - @manager.route("/sessions/related_questions", methods=["POST"])  # noqa: F821
 - @token_required
 - def related_questions(tenant_id):
 -     req = request.json
 -     if not req.get("question"):
 -         return get_error_data_result("`question` is required.")
 -     question = req["question"]
 -     chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
 -     prompt = """
 - Objective: To generate search terms related to the user's search keywords, helping users find more valuable information.
 - Instructions:
 -  - Based on the keywords provided by the user, generate 5-10 related search terms.
 -  - Each search term should be directly or indirectly related to the keyword, guiding the user to find more valuable information.
 -  - Use common, general terms as much as possible, avoiding obscure words or technical jargon.
 -  - Keep the term length between 2-4 words, concise and clear.
 -  - DO NOT translate, use the language of the original keywords.
 - 
 - ### Example:
 - Keywords: Chinese football
 - Related search terms:
 - 1. Current status of Chinese football
 - 2. Reform of Chinese football
 - 3. Youth training of Chinese football
 - 4. Chinese football in the Asian Cup
 - 5. Chinese football in the World Cup
 - 
 - Reason:
 -  - When searching, users often only use one or two keywords, making it difficult to fully express their information needs.
 -  - Generating related search terms can help users dig deeper into relevant information and improve search efficiency.
 -  - At the same time, related terms can also help search engines better understand user needs and return more accurate search results.
 - 
 - """
 -     ans = chat_mdl.chat(
 -         prompt,
 -         [
 -             {
 -                 "role": "user",
 -                 "content": f"""
 - Keywords: {question}
 - Related search terms:
 -     """,
 -             }
 -         ],
 -         {"temperature": 0.9},
 -     )
 -     return get_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])
 - 
 - 
 - @manager.route("/chatbots/<dialog_id>/completions", methods=["POST"])  # noqa: F821
 - def chatbot_completions(dialog_id):
 -     req = request.json
 - 
 -     token = request.headers.get("Authorization").split()
 -     if len(token) != 2:
 -         return get_error_data_result(message='Authorization is not valid!"')
 -     token = token[1]
 -     objs = APIToken.query(beta=token)
 -     if not objs:
 -         return get_error_data_result(message='Authentication error: API key is invalid!"')
 - 
 -     if "quote" not in req:
 -         req["quote"] = False
 - 
 -     if req.get("stream", True):
 -         resp = Response(iframe_completion(dialog_id, **req), mimetype="text/event-stream")
 -         resp.headers.add_header("Cache-control", "no-cache")
 -         resp.headers.add_header("Connection", "keep-alive")
 -         resp.headers.add_header("X-Accel-Buffering", "no")
 -         resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
 -         return resp
 - 
 -     for answer in iframe_completion(dialog_id, **req):
 -         return get_result(data=answer)
 - 
 - 
 - @manager.route("/agentbots/<agent_id>/completions", methods=["POST"])  # noqa: F821
 - def agent_bot_completions(agent_id):
 -     req = request.json
 - 
 -     token = request.headers.get("Authorization").split()
 -     if len(token) != 2:
 -         return get_error_data_result(message='Authorization is not valid!"')
 -     token = token[1]
 -     objs = APIToken.query(beta=token)
 -     if not objs:
 -         return get_error_data_result(message='Authentication error: API key is invalid!"')
 - 
 -     if "quote" not in req:
 -         req["quote"] = False
 - 
 -     if req.get("stream", True):
 -         resp = Response(agent_completion(objs[0].tenant_id, agent_id, **req), mimetype="text/event-stream")
 -         resp.headers.add_header("Cache-control", "no-cache")
 -         resp.headers.add_header("Connection", "keep-alive")
 -         resp.headers.add_header("X-Accel-Buffering", "no")
 -         resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
 -         return resp
 - 
 -     for answer in agent_completion(objs[0].tenant_id, agent_id, **req):
 -         return get_result(data=answer)
 
 
  |