您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import os
  17. import time
  18. import uuid
  19. from api.db import LLMType, UserTenantRole
  20. from api.db.db_models import init_database_tables as init_web_db, LLMFactories, LLM
  21. from api.db.services import UserService
  22. from api.db.services.llm_service import LLMFactoriesService, LLMService, TenantLLMService, LLMBundle
  23. from api.db.services.user_service import TenantService, UserTenantService
  24. from api.settings import CHAT_MDL, EMBEDDING_MDL, ASR_MDL, IMAGE2TEXT_MDL, PARSERS, LLM_FACTORY, API_KEY, LLM_BASE_URL
  25. def init_superuser():
  26. user_info = {
  27. "id": uuid.uuid1().hex,
  28. "password": "admin",
  29. "nickname": "admin",
  30. "is_superuser": True,
  31. "email": "admin@ragflow.io",
  32. "creator": "system",
  33. "status": "1",
  34. }
  35. tenant = {
  36. "id": user_info["id"],
  37. "name": user_info["nickname"] + "‘s Kingdom",
  38. "llm_id": CHAT_MDL,
  39. "embd_id": EMBEDDING_MDL,
  40. "asr_id": ASR_MDL,
  41. "parser_ids": PARSERS,
  42. "img2txt_id": IMAGE2TEXT_MDL
  43. }
  44. usr_tenant = {
  45. "tenant_id": user_info["id"],
  46. "user_id": user_info["id"],
  47. "invited_by": user_info["id"],
  48. "role": UserTenantRole.OWNER
  49. }
  50. tenant_llm = []
  51. for llm in LLMService.query(fid=LLM_FACTORY):
  52. tenant_llm.append(
  53. {"tenant_id": user_info["id"], "llm_factory": LLM_FACTORY, "llm_name": llm.llm_name, "model_type": llm.model_type,
  54. "api_key": API_KEY, "api_base": LLM_BASE_URL})
  55. if not UserService.save(**user_info):
  56. print("\033[93m【ERROR】\033[0mcan't init admin.")
  57. return
  58. TenantService.insert(**tenant)
  59. UserTenantService.insert(**usr_tenant)
  60. TenantLLMService.insert_many(tenant_llm)
  61. print(
  62. "【INFO】Super user initialized. \033[93memail: admin@ragflow.io, password: admin\033[0m. Changing the password after logining is strongly recomanded.")
  63. chat_mdl = LLMBundle(tenant["id"], LLMType.CHAT, tenant["llm_id"])
  64. msg = chat_mdl.chat(system="", history=[
  65. {"role": "user", "content": "Hello!"}], gen_conf={})
  66. if msg.find("ERROR: ") == 0:
  67. print(
  68. "\33[91m【ERROR】\33[0m: ",
  69. "'{}' dosen't work. {}".format(
  70. tenant["llm_id"],
  71. msg))
  72. embd_mdl = LLMBundle(tenant["id"], LLMType.EMBEDDING, tenant["embd_id"])
  73. v, c = embd_mdl.encode(["Hello!"])
  74. if c == 0:
  75. print(
  76. "\33[91m【ERROR】\33[0m:",
  77. " '{}' dosen't work!".format(
  78. tenant["embd_id"]))
  79. factory_infos = [{
  80. "name": "OpenAI",
  81. "logo": "",
  82. "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
  83. "status": "1",
  84. }, {
  85. "name": "Tongyi-Qianwen",
  86. "logo": "",
  87. "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
  88. "status": "1",
  89. }, {
  90. "name": "ZHIPU-AI",
  91. "logo": "",
  92. "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
  93. "status": "1",
  94. },
  95. {
  96. "name": "Ollama",
  97. "logo": "",
  98. "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
  99. "status": "1",
  100. }, {
  101. "name": "Moonshot",
  102. "logo": "",
  103. "tags": "LLM,TEXT EMBEDDING",
  104. "status": "1",
  105. }, {
  106. "name": "FastEmbed",
  107. "logo": "",
  108. "tags": "TEXT EMBEDDING",
  109. "status": "1",
  110. },
  111. {
  112. "name": "Xinference",
  113. "logo": "",
  114. "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
  115. "status": "1",
  116. },
  117. # {
  118. # "name": "文心一言",
  119. # "logo": "",
  120. # "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
  121. # "status": "1",
  122. # },
  123. ]
  124. def init_llm_factory():
  125. llm_infos = [
  126. # ---------------------- OpenAI ------------------------
  127. {
  128. "fid": factory_infos[0]["name"],
  129. "llm_name": "gpt-3.5-turbo",
  130. "tags": "LLM,CHAT,4K",
  131. "max_tokens": 4096,
  132. "model_type": LLMType.CHAT.value
  133. }, {
  134. "fid": factory_infos[0]["name"],
  135. "llm_name": "gpt-3.5-turbo-16k-0613",
  136. "tags": "LLM,CHAT,16k",
  137. "max_tokens": 16385,
  138. "model_type": LLMType.CHAT.value
  139. }, {
  140. "fid": factory_infos[0]["name"],
  141. "llm_name": "text-embedding-ada-002",
  142. "tags": "TEXT EMBEDDING,8K",
  143. "max_tokens": 8191,
  144. "model_type": LLMType.EMBEDDING.value
  145. }, {
  146. "fid": factory_infos[0]["name"],
  147. "llm_name": "whisper-1",
  148. "tags": "SPEECH2TEXT",
  149. "max_tokens": 25 * 1024 * 1024,
  150. "model_type": LLMType.SPEECH2TEXT.value
  151. }, {
  152. "fid": factory_infos[0]["name"],
  153. "llm_name": "gpt-4",
  154. "tags": "LLM,CHAT,8K",
  155. "max_tokens": 8191,
  156. "model_type": LLMType.CHAT.value
  157. }, {
  158. "fid": factory_infos[0]["name"],
  159. "llm_name": "gpt-4-turbo",
  160. "tags": "LLM,CHAT,8K",
  161. "max_tokens": 8191,
  162. "model_type": LLMType.CHAT.value
  163. },{
  164. "fid": factory_infos[0]["name"],
  165. "llm_name": "gpt-4-32k",
  166. "tags": "LLM,CHAT,32K",
  167. "max_tokens": 32768,
  168. "model_type": LLMType.CHAT.value
  169. }, {
  170. "fid": factory_infos[0]["name"],
  171. "llm_name": "gpt-4-vision-preview",
  172. "tags": "LLM,CHAT,IMAGE2TEXT",
  173. "max_tokens": 765,
  174. "model_type": LLMType.IMAGE2TEXT.value
  175. },
  176. # ----------------------- Qwen -----------------------
  177. {
  178. "fid": factory_infos[1]["name"],
  179. "llm_name": "qwen-turbo",
  180. "tags": "LLM,CHAT,8K",
  181. "max_tokens": 8191,
  182. "model_type": LLMType.CHAT.value
  183. }, {
  184. "fid": factory_infos[1]["name"],
  185. "llm_name": "qwen-plus",
  186. "tags": "LLM,CHAT,32K",
  187. "max_tokens": 32768,
  188. "model_type": LLMType.CHAT.value
  189. }, {
  190. "fid": factory_infos[1]["name"],
  191. "llm_name": "qwen-max-1201",
  192. "tags": "LLM,CHAT,6K",
  193. "max_tokens": 5899,
  194. "model_type": LLMType.CHAT.value
  195. }, {
  196. "fid": factory_infos[1]["name"],
  197. "llm_name": "text-embedding-v2",
  198. "tags": "TEXT EMBEDDING,2K",
  199. "max_tokens": 2048,
  200. "model_type": LLMType.EMBEDDING.value
  201. }, {
  202. "fid": factory_infos[1]["name"],
  203. "llm_name": "paraformer-realtime-8k-v1",
  204. "tags": "SPEECH2TEXT",
  205. "max_tokens": 25 * 1024 * 1024,
  206. "model_type": LLMType.SPEECH2TEXT.value
  207. }, {
  208. "fid": factory_infos[1]["name"],
  209. "llm_name": "qwen-vl-max",
  210. "tags": "LLM,CHAT,IMAGE2TEXT",
  211. "max_tokens": 765,
  212. "model_type": LLMType.IMAGE2TEXT.value
  213. },
  214. # ---------------------- ZhipuAI ----------------------
  215. {
  216. "fid": factory_infos[2]["name"],
  217. "llm_name": "glm-3-turbo",
  218. "tags": "LLM,CHAT,",
  219. "max_tokens": 128 * 1000,
  220. "model_type": LLMType.CHAT.value
  221. }, {
  222. "fid": factory_infos[2]["name"],
  223. "llm_name": "glm-4",
  224. "tags": "LLM,CHAT,",
  225. "max_tokens": 128 * 1000,
  226. "model_type": LLMType.CHAT.value
  227. }, {
  228. "fid": factory_infos[2]["name"],
  229. "llm_name": "glm-4v",
  230. "tags": "LLM,CHAT,IMAGE2TEXT",
  231. "max_tokens": 2000,
  232. "model_type": LLMType.IMAGE2TEXT.value
  233. },
  234. {
  235. "fid": factory_infos[2]["name"],
  236. "llm_name": "embedding-2",
  237. "tags": "TEXT EMBEDDING",
  238. "max_tokens": 512,
  239. "model_type": LLMType.EMBEDDING.value
  240. },
  241. # ------------------------ Moonshot -----------------------
  242. {
  243. "fid": factory_infos[4]["name"],
  244. "llm_name": "moonshot-v1-8k",
  245. "tags": "LLM,CHAT,",
  246. "max_tokens": 7900,
  247. "model_type": LLMType.CHAT.value
  248. }, {
  249. "fid": factory_infos[4]["name"],
  250. "llm_name": "flag-embedding",
  251. "tags": "TEXT EMBEDDING,",
  252. "max_tokens": 128 * 1000,
  253. "model_type": LLMType.EMBEDDING.value
  254. }, {
  255. "fid": factory_infos[4]["name"],
  256. "llm_name": "moonshot-v1-32k",
  257. "tags": "LLM,CHAT,",
  258. "max_tokens": 32768,
  259. "model_type": LLMType.CHAT.value
  260. }, {
  261. "fid": factory_infos[4]["name"],
  262. "llm_name": "moonshot-v1-128k",
  263. "tags": "LLM,CHAT",
  264. "max_tokens": 128 * 1000,
  265. "model_type": LLMType.CHAT.value
  266. },
  267. # ------------------------ FastEmbed -----------------------
  268. {
  269. "fid": factory_infos[5]["name"],
  270. "llm_name": "BAAI/bge-small-en-v1.5",
  271. "tags": "TEXT EMBEDDING,",
  272. "max_tokens": 512,
  273. "model_type": LLMType.EMBEDDING.value
  274. }, {
  275. "fid": factory_infos[5]["name"],
  276. "llm_name": "BAAI/bge-small-zh-v1.5",
  277. "tags": "TEXT EMBEDDING,",
  278. "max_tokens": 512,
  279. "model_type": LLMType.EMBEDDING.value
  280. }, {
  281. }, {
  282. "fid": factory_infos[5]["name"],
  283. "llm_name": "BAAI/bge-base-en-v1.5",
  284. "tags": "TEXT EMBEDDING,",
  285. "max_tokens": 512,
  286. "model_type": LLMType.EMBEDDING.value
  287. }, {
  288. }, {
  289. "fid": factory_infos[5]["name"],
  290. "llm_name": "BAAI/bge-large-en-v1.5",
  291. "tags": "TEXT EMBEDDING,",
  292. "max_tokens": 512,
  293. "model_type": LLMType.EMBEDDING.value
  294. }, {
  295. "fid": factory_infos[5]["name"],
  296. "llm_name": "sentence-transformers/all-MiniLM-L6-v2",
  297. "tags": "TEXT EMBEDDING,",
  298. "max_tokens": 512,
  299. "model_type": LLMType.EMBEDDING.value
  300. }, {
  301. "fid": factory_infos[5]["name"],
  302. "llm_name": "nomic-ai/nomic-embed-text-v1.5",
  303. "tags": "TEXT EMBEDDING,",
  304. "max_tokens": 8192,
  305. "model_type": LLMType.EMBEDDING.value
  306. }, {
  307. "fid": factory_infos[5]["name"],
  308. "llm_name": "jinaai/jina-embeddings-v2-small-en",
  309. "tags": "TEXT EMBEDDING,",
  310. "max_tokens": 2147483648,
  311. "model_type": LLMType.EMBEDDING.value
  312. }, {
  313. "fid": factory_infos[5]["name"],
  314. "llm_name": "jinaai/jina-embeddings-v2-base-en",
  315. "tags": "TEXT EMBEDDING,",
  316. "max_tokens": 2147483648,
  317. "model_type": LLMType.EMBEDDING.value
  318. },
  319. ]
  320. for info in factory_infos:
  321. try:
  322. LLMFactoriesService.save(**info)
  323. except Exception as e:
  324. pass
  325. for info in llm_infos:
  326. try:
  327. LLMService.save(**info)
  328. except Exception as e:
  329. pass
  330. LLMFactoriesService.filter_delete([LLMFactories.name=="Local"])
  331. LLMService.filter_delete([LLM.fid=="Local"])
  332. """
  333. drop table llm;
  334. drop table llm_factories;
  335. update tenant set parser_ids='naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One';
  336. alter table knowledgebase modify avatar longtext;
  337. alter table user modify avatar longtext;
  338. alter table dialog modify icon longtext;
  339. """
  340. def init_web_data():
  341. start_time = time.time()
  342. init_llm_factory()
  343. if not UserService.get_all().count():
  344. init_superuser()
  345. print("init web data success:{}".format(time.time() - start_time))
  346. if __name__ == '__main__':
  347. init_web_db()
  348. init_web_data()