- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import re
 - 
 - from openai.lib.azure import AzureOpenAI
 - from zhipuai import ZhipuAI
 - from dashscope import Generation
 - from abc import ABC
 - from openai import OpenAI
 - import openai
 - from ollama import Client
 - from rag.nlp import is_chinese, is_english
 - from rag.utils import num_tokens_from_string
 - import os
 - import json
 - import requests
 - import asyncio
 - 
 - LENGTH_NOTIFICATION_CN = "······\n由于长度的原因,回答被截断了,要继续吗?"
 - LENGTH_NOTIFICATION_EN = "...\nFor the content length reason, it stopped, continue?"
 - 
 - class Base(ABC):
 -     def __init__(self, key, model_name, base_url):
 -         timeout = int(os.environ.get('LM_TIMEOUT_SECONDS', 600))
 -         self.client = OpenAI(api_key=key, base_url=base_url, timeout=timeout)
 -         self.model_name = model_name
 - 
 -     def chat(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         try:
 -             response = self.client.chat.completions.create(
 -                 model=self.model_name,
 -                 messages=history,
 -                 **gen_conf)
 -             ans = response.choices[0].message.content.strip()
 -             if response.choices[0].finish_reason == "length":
 -                 if is_chinese(ans):
 -                     ans += LENGTH_NOTIFICATION_CN
 -                 else:
 -                     ans += LENGTH_NOTIFICATION_EN
 -             return ans, response.usage.total_tokens
 -         except openai.APIError as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         ans = ""
 -         total_tokens = 0
 -         try:
 -             response = self.client.chat.completions.create(
 -                 model=self.model_name,
 -                 messages=history,
 -                 stream=True,
 -                 **gen_conf)
 -             for resp in response:
 -                 if not resp.choices:
 -                     continue
 -                 if not resp.choices[0].delta.content:
 -                     resp.choices[0].delta.content = ""
 -                 ans += resp.choices[0].delta.content
 - 
 -                 if not hasattr(resp, "usage") or not resp.usage:
 -                     total_tokens = (
 -                                 total_tokens
 -                                 + num_tokens_from_string(resp.choices[0].delta.content)
 -                         )
 -                 elif isinstance(resp.usage, dict):
 -                     total_tokens = resp.usage.get("total_tokens", total_tokens)
 -                 else:
 -                     total_tokens = resp.usage.total_tokens
 - 
 -                 if resp.choices[0].finish_reason == "length":
 -                     if is_chinese(ans):
 -                         ans += LENGTH_NOTIFICATION_CN
 -                     else:
 -                         ans += LENGTH_NOTIFICATION_EN
 -                 yield ans
 - 
 -         except openai.APIError as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield total_tokens
 - 
 - 
 - class GptTurbo(Base):
 -     def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"):
 -         if not base_url:
 -             base_url = "https://api.openai.com/v1"
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class MoonshotChat(Base):
 -     def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"):
 -         if not base_url:
 -             base_url = "https://api.moonshot.cn/v1"
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class XinferenceChat(Base):
 -     def __init__(self, key=None, model_name="", base_url=""):
 -         if not base_url:
 -             raise ValueError("Local llm url cannot be None")
 -         if base_url.split("/")[-1] != "v1":
 -             base_url = os.path.join(base_url, "v1")
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class HuggingFaceChat(Base):
 -     def __init__(self, key=None, model_name="", base_url=""):
 -         if not base_url:
 -             raise ValueError("Local llm url cannot be None")
 -         if base_url.split("/")[-1] != "v1":
 -             base_url = os.path.join(base_url, "v1")
 -         super().__init__(key, model_name.split("___")[0], base_url)
 - 
 - 
 - class DeepSeekChat(Base):
 -     def __init__(self, key, model_name="deepseek-chat", base_url="https://api.deepseek.com/v1"):
 -         if not base_url:
 -             base_url = "https://api.deepseek.com/v1"
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class AzureChat(Base):
 -     def __init__(self, key, model_name, **kwargs):
 -         api_key = json.loads(key).get('api_key', '')
 -         api_version = json.loads(key).get('api_version', '2024-02-01')
 -         self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
 -         self.model_name = model_name
 - 
 - 
 - class BaiChuanChat(Base):
 -     def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1"):
 -         if not base_url:
 -             base_url = "https://api.baichuan-ai.com/v1"
 -         super().__init__(key, model_name, base_url)
 - 
 -     @staticmethod
 -     def _format_params(params):
 -         return {
 -             "temperature": params.get("temperature", 0.3),
 -             "max_tokens": params.get("max_tokens", 2048),
 -             "top_p": params.get("top_p", 0.85),
 -         }
 - 
 -     def chat(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         try:
 -             response = self.client.chat.completions.create(
 -                 model=self.model_name,
 -                 messages=history,
 -                 extra_body={
 -                     "tools": [{
 -                         "type": "web_search",
 -                         "web_search": {
 -                             "enable": True,
 -                             "search_mode": "performance_first"
 -                         }
 -                     }]
 -                 },
 -                 **self._format_params(gen_conf))
 -             ans = response.choices[0].message.content.strip()
 -             if response.choices[0].finish_reason == "length":
 -                 if is_chinese([ans]):
 -                     ans += LENGTH_NOTIFICATION_CN
 -                 else:
 -                     ans += LENGTH_NOTIFICATION_EN
 -             return ans, response.usage.total_tokens
 -         except openai.APIError as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         ans = ""
 -         total_tokens = 0
 -         try:
 -             response = self.client.chat.completions.create(
 -                 model=self.model_name,
 -                 messages=history,
 -                 extra_body={
 -                     "tools": [{
 -                         "type": "web_search",
 -                         "web_search": {
 -                             "enable": True,
 -                             "search_mode": "performance_first"
 -                         }
 -                     }]
 -                 },
 -                 stream=True,
 -                 **self._format_params(gen_conf))
 -             for resp in response:
 -                 if not resp.choices:
 -                     continue
 -                 if not resp.choices[0].delta.content:
 -                     resp.choices[0].delta.content = ""
 -                 ans += resp.choices[0].delta.content
 -                 total_tokens = (
 -                     (
 -                             total_tokens
 -                             + num_tokens_from_string(resp.choices[0].delta.content)
 -                     )
 -                     if not hasattr(resp, "usage")
 -                     else resp.usage["total_tokens"]
 -                 )
 -                 if resp.choices[0].finish_reason == "length":
 -                     if is_chinese([ans]):
 -                         ans += LENGTH_NOTIFICATION_CN
 -                     else:
 -                         ans += LENGTH_NOTIFICATION_EN
 -                 yield ans
 - 
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield total_tokens
 - 
 - 
 - class QWenChat(Base):
 -     def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs):
 -         import dashscope
 -         dashscope.api_key = key
 -         self.model_name = model_name
 - 
 -     def chat(self, system, history, gen_conf):
 -         stream_flag = str(os.environ.get('QWEN_CHAT_BY_STREAM', 'true')).lower() == 'true'
 -         if not stream_flag:
 -             from http import HTTPStatus
 -             if system:
 -                 history.insert(0, {"role": "system", "content": system})
 - 
 -             response = Generation.call(
 -                 self.model_name,
 -                 messages=history,
 -                 result_format='message',
 -                 **gen_conf
 -             )
 -             ans = ""
 -             tk_count = 0
 -             if response.status_code == HTTPStatus.OK:
 -                 ans += response.output.choices[0]['message']['content']
 -                 tk_count += response.usage.total_tokens
 -                 if response.output.choices[0].get("finish_reason", "") == "length":
 -                     if is_chinese([ans]):
 -                         ans += LENGTH_NOTIFICATION_CN
 -                     else:
 -                         ans += LENGTH_NOTIFICATION_EN
 -                 return ans, tk_count
 - 
 -             return "**ERROR**: " + response.message, tk_count
 -         else:
 -             g = self._chat_streamly(system, history, gen_conf, incremental_output=True)
 -             result_list = list(g)
 -             error_msg_list = [item for item in result_list if str(item).find("**ERROR**") >= 0]
 -             if len(error_msg_list) > 0:
 -                 return "**ERROR**: " + "".join(error_msg_list) , 0
 -             else:
 -                 return "".join(result_list[:-1]), result_list[-1]
 - 
 -     def _chat_streamly(self, system, history, gen_conf, incremental_output=False):
 -         from http import HTTPStatus
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         ans = ""
 -         tk_count = 0
 -         try:
 -             response = Generation.call(
 -                 self.model_name,
 -                 messages=history,
 -                 result_format='message',
 -                 stream=True,
 -                 incremental_output=incremental_output,
 -                 **gen_conf
 -             )
 -             for resp in response:
 -                 if resp.status_code == HTTPStatus.OK:
 -                     ans = resp.output.choices[0]['message']['content']
 -                     tk_count = resp.usage.total_tokens
 -                     if resp.output.choices[0].get("finish_reason", "") == "length":
 -                         if is_chinese(ans):
 -                             ans += LENGTH_NOTIFICATION_CN
 -                         else:
 -                             ans += LENGTH_NOTIFICATION_EN
 -                     yield ans
 -                 else:
 -                     yield ans + "\n**ERROR**: " + resp.message if not re.search(r" (key|quota)", str(resp.message).lower()) else "Out of credit. Please set the API key in **settings > Model providers.**"
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield tk_count
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         return self._chat_streamly(system, history, gen_conf)
 - 
 - 
 - class ZhipuChat(Base):
 -     def __init__(self, key, model_name="glm-3-turbo", **kwargs):
 -         self.client = ZhipuAI(api_key=key)
 -         self.model_name = model_name
 - 
 -     def chat(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         try:
 -             if "presence_penalty" in gen_conf:
 -                 del gen_conf["presence_penalty"]
 -             if "frequency_penalty" in gen_conf:
 -                 del gen_conf["frequency_penalty"]
 -             response = self.client.chat.completions.create(
 -                 model=self.model_name,
 -                 messages=history,
 -                 **gen_conf
 -             )
 -             ans = response.choices[0].message.content.strip()
 -             if response.choices[0].finish_reason == "length":
 -                 if is_chinese(ans):
 -                     ans += LENGTH_NOTIFICATION_CN
 -                 else:
 -                     ans += LENGTH_NOTIFICATION_EN
 -             return ans, response.usage.total_tokens
 -         except Exception as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         if "presence_penalty" in gen_conf:
 -             del gen_conf["presence_penalty"]
 -         if "frequency_penalty" in gen_conf:
 -             del gen_conf["frequency_penalty"]
 -         ans = ""
 -         tk_count = 0
 -         try:
 -             response = self.client.chat.completions.create(
 -                 model=self.model_name,
 -                 messages=history,
 -                 stream=True,
 -                 **gen_conf
 -             )
 -             for resp in response:
 -                 if not resp.choices[0].delta.content:
 -                     continue
 -                 delta = resp.choices[0].delta.content
 -                 ans += delta
 -                 if resp.choices[0].finish_reason == "length":
 -                     if is_chinese(ans):
 -                         ans += LENGTH_NOTIFICATION_CN
 -                     else:
 -                         ans += LENGTH_NOTIFICATION_EN
 -                     tk_count = resp.usage.total_tokens
 -                 if resp.choices[0].finish_reason == "stop":
 -                     tk_count = resp.usage.total_tokens
 -                 yield ans
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield tk_count
 - 
 - 
 - class OllamaChat(Base):
 -     def __init__(self, key, model_name, **kwargs):
 -         self.client = Client(host=kwargs["base_url"])
 -         self.model_name = model_name
 - 
 -     def chat(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         try:
 -             options = {}
 -             if "temperature" in gen_conf:
 -                 options["temperature"] = gen_conf["temperature"]
 -             if "max_tokens" in gen_conf:
 -                 options["num_predict"] = gen_conf["max_tokens"]
 -             if "top_p" in gen_conf:
 -                 options["top_p"] = gen_conf["top_p"]
 -             if "presence_penalty" in gen_conf:
 -                 options["presence_penalty"] = gen_conf["presence_penalty"]
 -             if "frequency_penalty" in gen_conf:
 -                 options["frequency_penalty"] = gen_conf["frequency_penalty"]
 -             response = self.client.chat(
 -                 model=self.model_name,
 -                 messages=history,
 -                 options=options,
 -                 keep_alive=-1
 -             )
 -             ans = response["message"]["content"].strip()
 -             return ans, response.get("eval_count", 0) + response.get("prompt_eval_count", 0)
 -         except Exception as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         options = {}
 -         if "temperature" in gen_conf:
 -             options["temperature"] = gen_conf["temperature"]
 -         if "max_tokens" in gen_conf:
 -             options["num_predict"] = gen_conf["max_tokens"]
 -         if "top_p" in gen_conf:
 -             options["top_p"] = gen_conf["top_p"]
 -         if "presence_penalty" in gen_conf:
 -             options["presence_penalty"] = gen_conf["presence_penalty"]
 -         if "frequency_penalty" in gen_conf:
 -             options["frequency_penalty"] = gen_conf["frequency_penalty"]
 -         ans = ""
 -         try:
 -             response = self.client.chat(
 -                 model=self.model_name,
 -                 messages=history,
 -                 stream=True,
 -                 options=options,
 -                 keep_alive=-1
 -             )
 -             for resp in response:
 -                 if resp["done"]:
 -                     yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
 -                 ans += resp["message"]["content"]
 -                 yield ans
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 -         yield 0
 - 
 - 
 - class LocalAIChat(Base):
 -     def __init__(self, key, model_name, base_url):
 -         if not base_url:
 -             raise ValueError("Local llm url cannot be None")
 -         if base_url.split("/")[-1] != "v1":
 -             base_url = os.path.join(base_url, "v1")
 -         self.client = OpenAI(api_key="empty", base_url=base_url)
 -         self.model_name = model_name.split("___")[0]
 - 
 - 
 - class LocalLLM(Base):
 -     class RPCProxy:
 -         def __init__(self, host, port):
 -             self.host = host
 -             self.port = int(port)
 -             self.__conn()
 - 
 -         def __conn(self):
 -             from multiprocessing.connection import Client
 - 
 -             self._connection = Client(
 -                 (self.host, self.port), authkey=b"infiniflow-token4kevinhu"
 -             )
 - 
 -         def __getattr__(self, name):
 -             import pickle
 - 
 -             def do_rpc(*args, **kwargs):
 -                 for _ in range(3):
 -                     try:
 -                         self._connection.send(pickle.dumps((name, args, kwargs)))
 -                         return pickle.loads(self._connection.recv())
 -                     except Exception:
 -                         self.__conn()
 -                 raise Exception("RPC connection lost!")
 - 
 -             return do_rpc
 - 
 -     def __init__(self, key, model_name):
 -         from jina import Client
 - 
 -         self.client = Client(port=12345, protocol="grpc", asyncio=True)
 - 
 -     def _prepare_prompt(self, system, history, gen_conf):
 -         from rag.svr.jina_server import Prompt
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         if "max_tokens" in gen_conf:
 -             gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens")
 -         return Prompt(message=history, gen_conf=gen_conf)
 - 
 -     def _stream_response(self, endpoint, prompt):
 -         from rag.svr.jina_server import Generation
 -         answer = ""
 -         try:
 -             res = self.client.stream_doc(
 -                 on=endpoint, inputs=prompt, return_type=Generation
 -             )
 -             loop = asyncio.get_event_loop()
 -             try:
 -                 while True:
 -                     answer = loop.run_until_complete(res.__anext__()).text
 -                     yield answer
 -             except StopAsyncIteration:
 -                 pass
 -         except Exception as e:
 -             yield answer + "\n**ERROR**: " + str(e)
 -         yield num_tokens_from_string(answer)
 - 
 -     def chat(self, system, history, gen_conf):
 -         prompt = self._prepare_prompt(system, history, gen_conf)
 -         chat_gen = self._stream_response("/chat", prompt)
 -         ans = next(chat_gen)
 -         total_tokens = next(chat_gen)
 -         return ans, total_tokens
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         prompt = self._prepare_prompt(system, history, gen_conf)
 -         return self._stream_response("/stream", prompt)
 - 
 - 
 - class VolcEngineChat(Base):
 -     def __init__(self, key, model_name, base_url='https://ark.cn-beijing.volces.com/api/v3'):
 -         """
 -         Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special,
 -         Assemble ark_api_key, ep_id into api_key, store it as a dictionary type, and parse it for use
 -         model_name is for display only
 -         """
 -         base_url = base_url if base_url else 'https://ark.cn-beijing.volces.com/api/v3'
 -         ark_api_key = json.loads(key).get('ark_api_key', '')
 -         model_name = json.loads(key).get('ep_id', '') + json.loads(key).get('endpoint_id', '')
 -         super().__init__(ark_api_key, model_name, base_url)
 - 
 - 
 - class MiniMaxChat(Base):
 -     def __init__(
 -             self,
 -             key,
 -             model_name,
 -             base_url="https://api.minimax.chat/v1/text/chatcompletion_v2",
 -     ):
 -         if not base_url:
 -             base_url = "https://api.minimax.chat/v1/text/chatcompletion_v2"
 -         self.base_url = base_url
 -         self.model_name = model_name
 -         self.api_key = key
 - 
 -     def chat(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         for k in list(gen_conf.keys()):
 -             if k not in ["temperature", "top_p", "max_tokens"]:
 -                 del gen_conf[k]
 -         headers = {
 -             "Authorization": f"Bearer {self.api_key}",
 -             "Content-Type": "application/json",
 -         }
 -         payload = json.dumps(
 -             {"model": self.model_name, "messages": history, **gen_conf}
 -         )
 -         try:
 -             response = requests.request(
 -                 "POST", url=self.base_url, headers=headers, data=payload
 -             )
 -             response = response.json()
 -             ans = response["choices"][0]["message"]["content"].strip()
 -             if response["choices"][0]["finish_reason"] == "length":
 -                 if is_chinese(ans):
 -                     ans += LENGTH_NOTIFICATION_CN
 -                 else:
 -                     ans += LENGTH_NOTIFICATION_EN
 -             return ans, response["usage"]["total_tokens"]
 -         except Exception as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         ans = ""
 -         total_tokens = 0
 -         try:
 -             headers = {
 -                 "Authorization": f"Bearer {self.api_key}",
 -                 "Content-Type": "application/json",
 -             }
 -             payload = json.dumps(
 -                 {
 -                     "model": self.model_name,
 -                     "messages": history,
 -                     "stream": True,
 -                     **gen_conf,
 -                 }
 -             )
 -             response = requests.request(
 -                 "POST",
 -                 url=self.base_url,
 -                 headers=headers,
 -                 data=payload,
 -             )
 -             for resp in response.text.split("\n\n")[:-1]:
 -                 resp = json.loads(resp[6:])
 -                 text = ""
 -                 if "choices" in resp and "delta" in resp["choices"][0]:
 -                     text = resp["choices"][0]["delta"]["content"]
 -                 ans += text
 -                 total_tokens = (
 -                     total_tokens + num_tokens_from_string(text)
 -                     if "usage" not in resp
 -                     else resp["usage"]["total_tokens"]
 -                 )
 -                 yield ans
 - 
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield total_tokens
 - 
 - 
 - class MistralChat(Base):
 - 
 -     def __init__(self, key, model_name, base_url=None):
 -         from mistralai.client import MistralClient
 -         self.client = MistralClient(api_key=key)
 -         self.model_name = model_name
 - 
 -     def chat(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         for k in list(gen_conf.keys()):
 -             if k not in ["temperature", "top_p", "max_tokens"]:
 -                 del gen_conf[k]
 -         try:
 -             response = self.client.chat(
 -                 model=self.model_name,
 -                 messages=history,
 -                 **gen_conf)
 -             ans = response.choices[0].message.content
 -             if response.choices[0].finish_reason == "length":
 -                 if is_chinese(ans):
 -                     ans += LENGTH_NOTIFICATION_CN
 -                 else:
 -                     ans += LENGTH_NOTIFICATION_EN
 -             return ans, response.usage.total_tokens
 -         except openai.APIError as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         for k in list(gen_conf.keys()):
 -             if k not in ["temperature", "top_p", "max_tokens"]:
 -                 del gen_conf[k]
 -         ans = ""
 -         total_tokens = 0
 -         try:
 -             response = self.client.chat_stream(
 -                 model=self.model_name,
 -                 messages=history,
 -                 **gen_conf)
 -             for resp in response:
 -                 if not resp.choices or not resp.choices[0].delta.content:
 -                     continue
 -                 ans += resp.choices[0].delta.content
 -                 total_tokens += 1
 -                 if resp.choices[0].finish_reason == "length":
 -                     if is_chinese(ans):
 -                         ans += LENGTH_NOTIFICATION_CN
 -                     else:
 -                         ans += LENGTH_NOTIFICATION_EN
 -                 yield ans
 - 
 -         except openai.APIError as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield total_tokens
 - 
 - 
 - class BedrockChat(Base):
 - 
 -     def __init__(self, key, model_name, **kwargs):
 -         import boto3
 -         self.bedrock_ak = json.loads(key).get('bedrock_ak', '')
 -         self.bedrock_sk = json.loads(key).get('bedrock_sk', '')
 -         self.bedrock_region = json.loads(key).get('bedrock_region', '')
 -         self.model_name = model_name
 -         self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
 -                                    aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
 - 
 -     def chat(self, system, history, gen_conf):
 -         from botocore.exceptions import ClientError
 -         for k in list(gen_conf.keys()):
 -             if k not in ["temperature", "top_p", "max_tokens"]:
 -                 del gen_conf[k]
 -         if "max_tokens" in gen_conf:
 -             gen_conf["maxTokens"] = gen_conf["max_tokens"]
 -             _ = gen_conf.pop("max_tokens")
 -         if "top_p" in gen_conf:
 -             gen_conf["topP"] = gen_conf["top_p"]
 -             _ = gen_conf.pop("top_p")
 -         for item in history:
 -             if not isinstance(item["content"], list) and not isinstance(item["content"], tuple):
 -                 item["content"] = [{"text": item["content"]}]
 - 
 -         try:
 -             # Send the message to the model, using a basic inference configuration.
 -             response = self.client.converse(
 -                 modelId=self.model_name,
 -                 messages=history,
 -                 inferenceConfig=gen_conf,
 -                 system=[{"text": (system if system else "Answer the user's message.")}],
 -             )
 - 
 -             # Extract and print the response text.
 -             ans = response["output"]["message"]["content"][0]["text"]
 -             return ans, num_tokens_from_string(ans)
 - 
 -         except (ClientError, Exception) as e:
 -             return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         from botocore.exceptions import ClientError
 -         for k in list(gen_conf.keys()):
 -             if k not in ["temperature", "top_p", "max_tokens"]:
 -                 del gen_conf[k]
 -         if "max_tokens" in gen_conf:
 -             gen_conf["maxTokens"] = gen_conf["max_tokens"]
 -             _ = gen_conf.pop("max_tokens")
 -         if "top_p" in gen_conf:
 -             gen_conf["topP"] = gen_conf["top_p"]
 -             _ = gen_conf.pop("top_p")
 -         for item in history:
 -             if not isinstance(item["content"], list) and not isinstance(item["content"], tuple):
 -                 item["content"] = [{"text": item["content"]}]
 - 
 -         if self.model_name.split('.')[0] == 'ai21':
 -             try:
 -                 response = self.client.converse(
 -                     modelId=self.model_name,
 -                     messages=history,
 -                     inferenceConfig=gen_conf,
 -                     system=[{"text": (system if system else "Answer the user's message.")}]
 -                 )
 -                 ans = response["output"]["message"]["content"][0]["text"]
 -                 return ans, num_tokens_from_string(ans)
 - 
 -             except (ClientError, Exception) as e:
 -                 return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
 - 
 -         ans = ""
 -         try:
 -             # Send the message to the model, using a basic inference configuration.
 -             streaming_response = self.client.converse_stream(
 -                 modelId=self.model_name,
 -                 messages=history,
 -                 inferenceConfig=gen_conf,
 -                 system=[{"text": (system if system else "Answer the user's message.")}]
 -             )
 - 
 -             # Extract and print the streamed response text in real-time.
 -             for resp in streaming_response["stream"]:
 -                 if "contentBlockDelta" in resp:
 -                     ans += resp["contentBlockDelta"]["delta"]["text"]
 -                     yield ans
 - 
 -         except (ClientError, Exception) as e:
 -             yield ans + f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}"
 - 
 -         yield num_tokens_from_string(ans)
 - 
 - 
 - class GeminiChat(Base):
 - 
 -     def __init__(self, key, model_name, base_url=None):
 -         from google.generativeai import client, GenerativeModel
 - 
 -         client.configure(api_key=key)
 -         _client = client.get_default_generative_client()
 -         self.model_name = 'models/' + model_name
 -         self.model = GenerativeModel(model_name=self.model_name)
 -         self.model._client = _client
 - 
 -     def chat(self, system, history, gen_conf):
 -         from google.generativeai.types import content_types
 - 
 -         if system:
 -             self.model._system_instruction = content_types.to_content(system)
 - 
 -         if 'max_tokens' in gen_conf:
 -             gen_conf['max_output_tokens'] = gen_conf['max_tokens']
 -         for k in list(gen_conf.keys()):
 -             if k not in ["temperature", "top_p", "max_output_tokens"]:
 -                 del gen_conf[k]
 -         for item in history:
 -             if 'role' in item and item['role'] == 'assistant':
 -                 item['role'] = 'model'
 -             if 'role' in item and item['role'] == 'system':
 -                 item['role'] = 'user'
 -             if 'content' in item:
 -                 item['parts'] = item.pop('content')
 - 
 -         try:
 -             response = self.model.generate_content(
 -                 history,
 -                 generation_config=gen_conf)
 -             ans = response.text
 -             return ans, response.usage_metadata.total_token_count
 -         except Exception as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         from google.generativeai.types import content_types
 - 
 -         if system:
 -             self.model._system_instruction = content_types.to_content(system)
 -         if 'max_tokens' in gen_conf:
 -             gen_conf['max_output_tokens'] = gen_conf['max_tokens']
 -         for k in list(gen_conf.keys()):
 -             if k not in ["temperature", "top_p", "max_output_tokens"]:
 -                 del gen_conf[k]
 -         for item in history:
 -             if 'role' in item and item['role'] == 'assistant':
 -                 item['role'] = 'model'
 -             if 'content' in item:
 -                 item['parts'] = item.pop('content')
 -         ans = ""
 -         try:
 -             response = self.model.generate_content(
 -                 history,
 -                 generation_config=gen_conf, stream=True)
 -             for resp in response:
 -                 ans += resp.text
 -                 yield ans
 - 
 -             yield response._chunks[-1].usage_metadata.total_token_count
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield 0
 - 
 - 
 - class GroqChat:
 -     def __init__(self, key, model_name, base_url=''):
 -         from groq import Groq
 -         self.client = Groq(api_key=key)
 -         self.model_name = model_name
 - 
 -     def chat(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         for k in list(gen_conf.keys()):
 -             if k not in ["temperature", "top_p", "max_tokens"]:
 -                 del gen_conf[k]
 -         ans = ""
 -         try:
 -             response = self.client.chat.completions.create(
 -                 model=self.model_name,
 -                 messages=history,
 -                 **gen_conf
 -             )
 -             ans = response.choices[0].message.content
 -             if response.choices[0].finish_reason == "length":
 -                 if is_chinese(ans):
 -                     ans += LENGTH_NOTIFICATION_CN
 -                 else:
 -                     ans += LENGTH_NOTIFICATION_EN
 -             return ans, response.usage.total_tokens
 -         except Exception as e:
 -             return ans + "\n**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         for k in list(gen_conf.keys()):
 -             if k not in ["temperature", "top_p", "max_tokens"]:
 -                 del gen_conf[k]
 -         ans = ""
 -         total_tokens = 0
 -         try:
 -             response = self.client.chat.completions.create(
 -                 model=self.model_name,
 -                 messages=history,
 -                 stream=True,
 -                 **gen_conf
 -             )
 -             for resp in response:
 -                 if not resp.choices or not resp.choices[0].delta.content:
 -                     continue
 -                 ans += resp.choices[0].delta.content
 -                 total_tokens += 1
 -                 if resp.choices[0].finish_reason == "length":
 -                     if is_chinese(ans):
 -                         ans += LENGTH_NOTIFICATION_CN
 -                     else:
 -                         ans += LENGTH_NOTIFICATION_EN
 -                 yield ans
 - 
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield total_tokens
 - 
 - 
 - ## openrouter
 - class OpenRouterChat(Base):
 -     def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1"):
 -         if not base_url:
 -             base_url = "https://openrouter.ai/api/v1"
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class StepFunChat(Base):
 -     def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1"):
 -         if not base_url:
 -             base_url = "https://api.stepfun.com/v1"
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class NvidiaChat(Base):
 -     def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1"):
 -         if not base_url:
 -             base_url = "https://integrate.api.nvidia.com/v1"
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class LmStudioChat(Base):
 -     def __init__(self, key, model_name, base_url):
 -         if not base_url:
 -             raise ValueError("Local llm url cannot be None")
 -         if base_url.split("/")[-1] != "v1":
 -             base_url = os.path.join(base_url, "v1")
 -         self.client = OpenAI(api_key="lm-studio", base_url=base_url)
 -         self.model_name = model_name
 - 
 - 
 - class OpenAI_APIChat(Base):
 -     def __init__(self, key, model_name, base_url):
 -         if not base_url:
 -             raise ValueError("url cannot be None")
 -         if base_url.split("/")[-1] != "v1":
 -             base_url = os.path.join(base_url, "v1")
 -         model_name = model_name.split("___")[0]
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class CoHereChat(Base):
 -     def __init__(self, key, model_name, base_url=""):
 -         from cohere import Client
 - 
 -         self.client = Client(api_key=key)
 -         self.model_name = model_name
 - 
 -     def chat(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         if "top_p" in gen_conf:
 -             gen_conf["p"] = gen_conf.pop("top_p")
 -         if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
 -             gen_conf.pop("presence_penalty")
 -         for item in history:
 -             if "role" in item and item["role"] == "user":
 -                 item["role"] = "USER"
 -             if "role" in item and item["role"] == "assistant":
 -                 item["role"] = "CHATBOT"
 -             if "content" in item:
 -                 item["message"] = item.pop("content")
 -         mes = history.pop()["message"]
 -         ans = ""
 -         try:
 -             response = self.client.chat(
 -                 model=self.model_name, chat_history=history, message=mes, **gen_conf
 -             )
 -             ans = response.text
 -             if response.finish_reason == "MAX_TOKENS":
 -                 ans += (
 -                     "...\nFor the content length reason, it stopped, continue?"
 -                     if is_english([ans])
 -                     else "······\n由于长度的原因,回答被截断了,要继续吗?"
 -                 )
 -             return (
 -                 ans,
 -                 response.meta.tokens.input_tokens + response.meta.tokens.output_tokens,
 -             )
 -         except Exception as e:
 -             return ans + "\n**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         if "top_p" in gen_conf:
 -             gen_conf["p"] = gen_conf.pop("top_p")
 -         if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
 -             gen_conf.pop("presence_penalty")
 -         for item in history:
 -             if "role" in item and item["role"] == "user":
 -                 item["role"] = "USER"
 -             if "role" in item and item["role"] == "assistant":
 -                 item["role"] = "CHATBOT"
 -             if "content" in item:
 -                 item["message"] = item.pop("content")
 -         mes = history.pop()["message"]
 -         ans = ""
 -         total_tokens = 0
 -         try:
 -             response = self.client.chat_stream(
 -                 model=self.model_name, chat_history=history, message=mes, **gen_conf
 -             )
 -             for resp in response:
 -                 if resp.event_type == "text-generation":
 -                     ans += resp.text
 -                     total_tokens += num_tokens_from_string(resp.text)
 -                 elif resp.event_type == "stream-end":
 -                     if resp.finish_reason == "MAX_TOKENS":
 -                         ans += (
 -                             "...\nFor the content length reason, it stopped, continue?"
 -                             if is_english([ans])
 -                             else "······\n由于长度的原因,回答被截断了,要继续吗?"
 -                         )
 -                 yield ans
 - 
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield total_tokens
 - 
 - 
 - class LeptonAIChat(Base):
 -     def __init__(self, key, model_name, base_url=None):
 -         if not base_url:
 -             base_url = os.path.join("https://" + model_name + ".lepton.run", "api", "v1")
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class TogetherAIChat(Base):
 -     def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
 -         if not base_url:
 -             base_url = "https://api.together.xyz/v1"
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class PerfXCloudChat(Base):
 -     def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
 -         if not base_url:
 -             base_url = "https://cloud.perfxlab.cn/v1"
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class UpstageChat(Base):
 -     def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
 -         if not base_url:
 -             base_url = "https://api.upstage.ai/v1/solar"
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class NovitaAIChat(Base):
 -     def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai"):
 -         if not base_url:
 -             base_url = "https://api.novita.ai/v3/openai"
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class SILICONFLOWChat(Base):
 -     def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1"):
 -         if not base_url:
 -             base_url = "https://api.siliconflow.cn/v1"
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class YiChat(Base):
 -     def __init__(self, key, model_name, base_url="https://api.lingyiwanwu.com/v1"):
 -         if not base_url:
 -             base_url = "https://api.lingyiwanwu.com/v1"
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class ReplicateChat(Base):
 -     def __init__(self, key, model_name, base_url=None):
 -         from replicate.client import Client
 - 
 -         self.model_name = model_name
 -         self.client = Client(api_token=key)
 -         self.system = ""
 - 
 -     def chat(self, system, history, gen_conf):
 -         if "max_tokens" in gen_conf:
 -             gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens")
 -         if system:
 -             self.system = system
 -         prompt = "\n".join(
 -             [item["role"] + ":" + item["content"] for item in history[-5:]]
 -         )
 -         ans = ""
 -         try:
 -             response = self.client.run(
 -                 self.model_name,
 -                 input={"system_prompt": self.system, "prompt": prompt, **gen_conf},
 -             )
 -             ans = "".join(response)
 -             return ans, num_tokens_from_string(ans)
 -         except Exception as e:
 -             return ans + "\n**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         if "max_tokens" in gen_conf:
 -             gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens")
 -         if system:
 -             self.system = system
 -         prompt = "\n".join(
 -             [item["role"] + ":" + item["content"] for item in history[-5:]]
 -         )
 -         ans = ""
 -         try:
 -             response = self.client.run(
 -                 self.model_name,
 -                 input={"system_prompt": self.system, "prompt": prompt, **gen_conf},
 -             )
 -             for resp in response:
 -                 ans += resp
 -                 yield ans
 - 
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield num_tokens_from_string(ans)
 - 
 - 
 - class HunyuanChat(Base):
 -     def __init__(self, key, model_name, base_url=None):
 -         from tencentcloud.common import credential
 -         from tencentcloud.hunyuan.v20230901 import hunyuan_client
 - 
 -         key = json.loads(key)
 -         sid = key.get("hunyuan_sid", "")
 -         sk = key.get("hunyuan_sk", "")
 -         cred = credential.Credential(sid, sk)
 -         self.model_name = model_name
 -         self.client = hunyuan_client.HunyuanClient(cred, "")
 - 
 -     def chat(self, system, history, gen_conf):
 -         from tencentcloud.hunyuan.v20230901 import models
 -         from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
 -             TencentCloudSDKException,
 -         )
 - 
 -         _gen_conf = {}
 -         _history = [{k.capitalize(): v for k, v in item.items()} for item in history]
 -         if system:
 -             _history.insert(0, {"Role": "system", "Content": system})
 -         if "temperature" in gen_conf:
 -             _gen_conf["Temperature"] = gen_conf["temperature"]
 -         if "top_p" in gen_conf:
 -             _gen_conf["TopP"] = gen_conf["top_p"]
 - 
 -         req = models.ChatCompletionsRequest()
 -         params = {"Model": self.model_name, "Messages": _history, **_gen_conf}
 -         req.from_json_string(json.dumps(params))
 -         ans = ""
 -         try:
 -             response = self.client.ChatCompletions(req)
 -             ans = response.Choices[0].Message.Content
 -             return ans, response.Usage.TotalTokens
 -         except TencentCloudSDKException as e:
 -             return ans + "\n**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         from tencentcloud.hunyuan.v20230901 import models
 -         from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
 -             TencentCloudSDKException,
 -         )
 - 
 -         _gen_conf = {}
 -         _history = [{k.capitalize(): v for k, v in item.items()} for item in history]
 -         if system:
 -             _history.insert(0, {"Role": "system", "Content": system})
 - 
 -         if "temperature" in gen_conf:
 -             _gen_conf["Temperature"] = gen_conf["temperature"]
 -         if "top_p" in gen_conf:
 -             _gen_conf["TopP"] = gen_conf["top_p"]
 -         req = models.ChatCompletionsRequest()
 -         params = {
 -             "Model": self.model_name,
 -             "Messages": _history,
 -             "Stream": True,
 -             **_gen_conf,
 -         }
 -         req.from_json_string(json.dumps(params))
 -         ans = ""
 -         total_tokens = 0
 -         try:
 -             response = self.client.ChatCompletions(req)
 -             for resp in response:
 -                 resp = json.loads(resp["data"])
 -                 if not resp["Choices"] or not resp["Choices"][0]["Delta"]["Content"]:
 -                     continue
 -                 ans += resp["Choices"][0]["Delta"]["Content"]
 -                 total_tokens += 1
 - 
 -                 yield ans
 - 
 -         except TencentCloudSDKException as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield total_tokens
 - 
 - 
 - class SparkChat(Base):
 -     def __init__(
 -             self, key, model_name, base_url="https://spark-api-open.xf-yun.com/v1"
 -     ):
 -         if not base_url:
 -             base_url = "https://spark-api-open.xf-yun.com/v1"
 -         model2version = {
 -             "Spark-Max": "generalv3.5",
 -             "Spark-Lite": "general",
 -             "Spark-Pro": "generalv3",
 -             "Spark-Pro-128K": "pro-128k",
 -             "Spark-4.0-Ultra": "4.0Ultra",
 -         }
 -         version2model = {v: k for k, v in model2version.items()}
 -         assert model_name in model2version or model_name in version2model, f"The given model name is not supported yet. Support: {list(model2version.keys())}"
 -         if model_name in model2version:
 -             model_version = model2version[model_name]
 -         else:
 -             model_version = model_name
 -         super().__init__(key, model_version, base_url)
 - 
 - 
 - class BaiduYiyanChat(Base):
 -     def __init__(self, key, model_name, base_url=None):
 -         import qianfan
 - 
 -         key = json.loads(key)
 -         ak = key.get("yiyan_ak", "")
 -         sk = key.get("yiyan_sk", "")
 -         self.client = qianfan.ChatCompletion(ak=ak, sk=sk)
 -         self.model_name = model_name.lower()
 -         self.system = ""
 - 
 -     def chat(self, system, history, gen_conf):
 -         if system:
 -             self.system = system
 -         gen_conf["penalty_score"] = (
 -                                             (gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty",
 -                                                                                                 0)) / 2
 -                                     ) + 1
 -         if "max_tokens" in gen_conf:
 -             gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
 -         ans = ""
 - 
 -         try:
 -             response = self.client.do(
 -                 model=self.model_name,
 -                 messages=history,
 -                 system=self.system,
 -                 **gen_conf
 -             ).body
 -             ans = response['result']
 -             return ans, response["usage"]["total_tokens"]
 - 
 -         except Exception as e:
 -             return ans + "\n**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         if system:
 -             self.system = system
 -         gen_conf["penalty_score"] = (
 -                                             (gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty",
 -                                                                                                 0)) / 2
 -                                     ) + 1
 -         if "max_tokens" in gen_conf:
 -             gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
 -         ans = ""
 -         total_tokens = 0
 - 
 -         try:
 -             response = self.client.do(
 -                 model=self.model_name,
 -                 messages=history,
 -                 system=self.system,
 -                 stream=True,
 -                 **gen_conf
 -             )
 -             for resp in response:
 -                 resp = resp.body
 -                 ans += resp['result']
 -                 total_tokens = resp["usage"]["total_tokens"]
 - 
 -                 yield ans
 - 
 -         except Exception as e:
 -             return ans + "\n**ERROR**: " + str(e), 0
 - 
 -         yield total_tokens
 - 
 - 
 - class AnthropicChat(Base):
 -     def __init__(self, key, model_name, base_url=None):
 -         import anthropic
 - 
 -         self.client = anthropic.Anthropic(api_key=key)
 -         self.model_name = model_name
 -         self.system = ""
 - 
 -     def chat(self, system, history, gen_conf):
 -         if system:
 -             self.system = system
 -         if "max_tokens" not in gen_conf:
 -             gen_conf["max_tokens"] = 4096
 -         if "presence_penalty" in gen_conf:
 -             del gen_conf["presence_penalty"]
 -         if "frequency_penalty" in gen_conf:
 -             del gen_conf["frequency_penalty"]
 - 
 -         ans = ""
 -         try:
 -             response = self.client.messages.create(
 -                 model=self.model_name,
 -                 messages=history,
 -                 system=self.system,
 -                 stream=False,
 -                 **gen_conf,
 -             ).to_dict()
 -             ans = response["content"][0]["text"]
 -             if response["stop_reason"] == "max_tokens":
 -                 ans += (
 -                     "...\nFor the content length reason, it stopped, continue?"
 -                     if is_english([ans])
 -                     else "······\n由于长度的原因,回答被截断了,要继续吗?"
 -                 )
 -             return (
 -                 ans,
 -                 response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
 -             )
 -         except Exception as e:
 -             return ans + "\n**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         if system:
 -             self.system = system
 -         if "max_tokens" not in gen_conf:
 -             gen_conf["max_tokens"] = 4096
 -         if "presence_penalty" in gen_conf:
 -             del gen_conf["presence_penalty"]
 -         if "frequency_penalty" in gen_conf:
 -             del gen_conf["frequency_penalty"]
 - 
 -         ans = ""
 -         total_tokens = 0
 -         try:
 -             response = self.client.messages.create(
 -                 model=self.model_name,
 -                 messages=history,
 -                 system=self.system,
 -                 stream=True,
 -                 **gen_conf,
 -             )
 -             for res in response.iter_lines():
 -                 if res.type == 'content_block_delta':
 -                     text = res.delta.text
 -                     ans += text
 -                     total_tokens += num_tokens_from_string(text)
 -                     yield ans
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield total_tokens
 - 
 - 
 - class GoogleChat(Base):
 -     def __init__(self, key, model_name, base_url=None):
 -         from google.oauth2 import service_account
 -         import base64
 - 
 -         key = json.load(key)
 -         access_token = json.loads(
 -             base64.b64decode(key.get("google_service_account_key", ""))
 -         )
 -         project_id = key.get("google_project_id", "")
 -         region = key.get("google_region", "")
 - 
 -         scopes = ["https://www.googleapis.com/auth/cloud-platform"]
 -         self.model_name = model_name
 -         self.system = ""
 - 
 -         if "claude" in self.model_name:
 -             from anthropic import AnthropicVertex
 -             from google.auth.transport.requests import Request
 - 
 -             if access_token:
 -                 credits = service_account.Credentials.from_service_account_info(
 -                     access_token, scopes=scopes
 -                 )
 -                 request = Request()
 -                 credits.refresh(request)
 -                 token = credits.token
 -                 self.client = AnthropicVertex(
 -                     region=region, project_id=project_id, access_token=token
 -                 )
 -             else:
 -                 self.client = AnthropicVertex(region=region, project_id=project_id)
 -         else:
 -             from google.cloud import aiplatform
 -             import vertexai.generative_models as glm
 - 
 -             if access_token:
 -                 credits = service_account.Credentials.from_service_account_info(
 -                     access_token
 -                 )
 -                 aiplatform.init(
 -                     credentials=credits, project=project_id, location=region
 -                 )
 -             else:
 -                 aiplatform.init(project=project_id, location=region)
 -             self.client = glm.GenerativeModel(model_name=self.model_name)
 - 
 -     def chat(self, system, history, gen_conf):
 -         if system:
 -             self.system = system
 - 
 -         if "claude" in self.model_name:
 -             if "max_tokens" not in gen_conf:
 -                 gen_conf["max_tokens"] = 4096
 -             try:
 -                 response = self.client.messages.create(
 -                     model=self.model_name,
 -                     messages=history,
 -                     system=self.system,
 -                     stream=False,
 -                     **gen_conf,
 -                 ).json()
 -                 ans = response["content"][0]["text"]
 -                 if response["stop_reason"] == "max_tokens":
 -                     ans += (
 -                         "...\nFor the content length reason, it stopped, continue?"
 -                         if is_english([ans])
 -                         else "······\n由于长度的原因,回答被截断了,要继续吗?"
 -                     )
 -                 return (
 -                     ans,
 -                     response["usage"]["input_tokens"]
 -                     + response["usage"]["output_tokens"],
 -                 )
 -             except Exception as e:
 -                 return "\n**ERROR**: " + str(e), 0
 -         else:
 -             self.client._system_instruction = self.system
 -             if "max_tokens" in gen_conf:
 -                 gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
 -             for k in list(gen_conf.keys()):
 -                 if k not in ["temperature", "top_p", "max_output_tokens"]:
 -                     del gen_conf[k]
 -             for item in history:
 -                 if "role" in item and item["role"] == "assistant":
 -                     item["role"] = "model"
 -                 if "content" in item:
 -                     item["parts"] = item.pop("content")
 -             try:
 -                 response = self.client.generate_content(
 -                     history, generation_config=gen_conf
 -                 )
 -                 ans = response.text
 -                 return ans, response.usage_metadata.total_token_count
 -             except Exception as e:
 -                 return "**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         if system:
 -             self.system = system
 - 
 -         if "claude" in self.model_name:
 -             if "max_tokens" not in gen_conf:
 -                 gen_conf["max_tokens"] = 4096
 -             ans = ""
 -             total_tokens = 0
 -             try:
 -                 response = self.client.messages.create(
 -                     model=self.model_name,
 -                     messages=history,
 -                     system=self.system,
 -                     stream=True,
 -                     **gen_conf,
 -                 )
 -                 for res in response.iter_lines():
 -                     res = res.decode("utf-8")
 -                     if "content_block_delta" in res and "data" in res:
 -                         text = json.loads(res[6:])["delta"]["text"]
 -                         ans += text
 -                         total_tokens += num_tokens_from_string(text)
 -             except Exception as e:
 -                 yield ans + "\n**ERROR**: " + str(e)
 - 
 -             yield total_tokens
 -         else:
 -             self.client._system_instruction = self.system
 -             if "max_tokens" in gen_conf:
 -                 gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
 -             for k in list(gen_conf.keys()):
 -                 if k not in ["temperature", "top_p", "max_output_tokens"]:
 -                     del gen_conf[k]
 -             for item in history:
 -                 if "role" in item and item["role"] == "assistant":
 -                     item["role"] = "model"
 -                 if "content" in item:
 -                     item["parts"] = item.pop("content")
 -             ans = ""
 -             try:
 -                 response = self.model.generate_content(
 -                     history, generation_config=gen_conf, stream=True
 -                 )
 -                 for resp in response:
 -                     ans += resp.text
 -                     yield ans
 - 
 -             except Exception as e:
 -                 yield ans + "\n**ERROR**: " + str(e)
 - 
 -             yield response._chunks[-1].usage_metadata.total_token_count
 - 
 - class GPUStackChat(Base):
 -     def __init__(self, key=None, model_name="", base_url=""):
 -         if not base_url:
 -             raise ValueError("Local llm url cannot be None")
 -         if base_url.split("/")[-1] != "v1-openai":
 -             base_url = os.path.join(base_url, "v1-openai")
 -         super().__init__(key, model_name, base_url)
 
 
  |