- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import logging
 - import re
 - import threading
 - import requests
 - from huggingface_hub import snapshot_download
 - from zhipuai import ZhipuAI
 - import os
 - from abc import ABC
 - from ollama import Client
 - import dashscope
 - from openai import OpenAI
 - import numpy as np
 - import asyncio
 - 
 - from api import settings
 - from api.utils.file_utils import get_home_cache_dir
 - from rag.utils import num_tokens_from_string, truncate
 - import google.generativeai as genai 
 - import json
 - 
 - 
 - class Base(ABC):
 -     def __init__(self, key, model_name):
 -         pass
 - 
 -     def encode(self, texts: list):
 -         raise NotImplementedError("Please implement encode method!")
 - 
 -     def encode_queries(self, text: str):
 -         raise NotImplementedError("Please implement encode method!")
 - 
 - 
 - class DefaultEmbedding(Base):
 -     _model = None
 -     _model_name = ""
 -     _model_lock = threading.Lock()
 -     def __init__(self, key, model_name, **kwargs):
 -         """
 -         If you have trouble downloading HuggingFace models, -_^ this might help!!
 - 
 -         For Linux:
 -         export HF_ENDPOINT=https://hf-mirror.com
 - 
 -         For Windows:
 -         Good luck
 -         ^_-
 - 
 -         """
 -         if not settings.LIGHTEN and not DefaultEmbedding._model:
 -             with DefaultEmbedding._model_lock:
 -                 from FlagEmbedding import FlagModel
 -                 import torch
 -                 if not DefaultEmbedding._model:
 -                     try:
 -                         DefaultEmbedding._model = FlagModel(os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
 -                                                             query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
 -                                                             use_fp16=torch.cuda.is_available())
 -                         DefaultEmbedding._model_name = model_name
 -                     except Exception:
 -                         model_dir = snapshot_download(repo_id="BAAI/bge-large-zh-v1.5",
 -                                                       local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
 -                                                       local_dir_use_symlinks=False)
 -                         DefaultEmbedding._model = FlagModel(model_dir,
 -                                                             query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
 -                                                             use_fp16=torch.cuda.is_available())
 -         self._model = DefaultEmbedding._model
 -         self._model_name = DefaultEmbedding._model_name
 - 
 -     def encode(self, texts: list):
 -         batch_size = 16
 -         texts = [truncate(t, 2048) for t in texts]
 -         token_count = 0
 -         for t in texts:
 -             token_count += num_tokens_from_string(t)
 -         ress = []
 -         for i in range(0, len(texts), batch_size):
 -             ress.extend(self._model.encode(texts[i:i + batch_size]).tolist())
 -         return np.array(ress), token_count
 - 
 -     def encode_queries(self, text: str):
 -         token_count = num_tokens_from_string(text)
 -         return self._model.encode_queries([text]).tolist()[0], token_count
 - 
 - 
 - class OpenAIEmbed(Base):
 -     def __init__(self, key, model_name="text-embedding-ada-002",
 -                  base_url="https://api.openai.com/v1"):
 -         if not base_url:
 -             base_url = "https://api.openai.com/v1"
 -         self.client = OpenAI(api_key=key, base_url=base_url)
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list):
 -         # OpenAI requires batch size <=16
 -         batch_size = 16
 -         texts = [truncate(t, 8191) for t in texts]
 -         ress = []
 -         total_tokens = 0
 -         for i in range(0, len(texts), batch_size):
 -             res = self.client.embeddings.create(input=texts[i:i + batch_size],
 -                                                 model=self.model_name)
 -             ress.extend([d.embedding for d in res.data])
 -             total_tokens += res.usage.total_tokens
 -         return np.array(ress), total_tokens
 - 
 -     def encode_queries(self, text):
 -         res = self.client.embeddings.create(input=[truncate(text, 8191)],
 -                                             model=self.model_name)
 -         return np.array(res.data[0].embedding), res.usage.total_tokens
 - 
 - 
 - class LocalAIEmbed(Base):
 -     def __init__(self, key, model_name, base_url):
 -         if not base_url:
 -             raise ValueError("Local embedding model url cannot be None")
 -         if base_url.split("/")[-1] != "v1":
 -             base_url = os.path.join(base_url, "v1")
 -         self.client = OpenAI(api_key="empty", base_url=base_url)
 -         self.model_name = model_name.split("___")[0]
 - 
 -     def encode(self, texts: list):
 -         batch_size = 16
 -         ress = []
 -         for i in range(0, len(texts), batch_size):
 -             res = self.client.embeddings.create(input=texts[i:i + batch_size], model=self.model_name)
 -             ress.extend([d.embedding for d in res.data])
 -         # local embedding for LmStudio donot count tokens
 -         return np.array(ress), 1024
 - 
 -     def encode_queries(self, text):
 -         embds, cnt = self.encode([text])
 -         return np.array(embds[0]), cnt
 - 
 - 
 - class AzureEmbed(OpenAIEmbed):
 -     def __init__(self, key, model_name, **kwargs):
 -         from openai.lib.azure import AzureOpenAI
 -         api_key = json.loads(key).get('api_key', '')
 -         api_version = json.loads(key).get('api_version', '2024-02-01')
 -         self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
 -         self.model_name = model_name
 - 
 - 
 - class BaiChuanEmbed(OpenAIEmbed):
 -     def __init__(self, key,
 -                  model_name='Baichuan-Text-Embedding',
 -                  base_url='https://api.baichuan-ai.com/v1'):
 -         if not base_url:
 -             base_url = "https://api.baichuan-ai.com/v1"
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class QWenEmbed(Base):
 -     def __init__(self, key, model_name="text_embedding_v2", **kwargs):
 -         self.key = key
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list):
 -         import dashscope
 -         batch_size = 4
 -         try:
 -             res = []
 -             token_count = 0
 -             texts = [truncate(t, 2048) for t in texts]
 -             for i in range(0, len(texts), batch_size):
 -                 resp = dashscope.TextEmbedding.call(
 -                     model=self.model_name,
 -                     input=texts[i:i + batch_size],
 -                     api_key=self.key,
 -                     text_type="document"
 -                 )
 -                 embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
 -                 for e in resp["output"]["embeddings"]:
 -                     embds[e["text_index"]] = e["embedding"]
 -                 res.extend(embds)
 -                 token_count += resp["usage"]["total_tokens"]
 -             return np.array(res), token_count
 -         except Exception as e:
 -             raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
 -         return np.array([]), 0
 - 
 -     def encode_queries(self, text):
 -         try:
 -             resp = dashscope.TextEmbedding.call(
 -                 model=self.model_name,
 -                 input=text[:2048],
 -                 api_key=self.key,
 -                 text_type="query"
 -             )
 -             return np.array(resp["output"]["embeddings"][0]
 -                             ["embedding"]), resp["usage"]["total_tokens"]
 -         except Exception:
 -             raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
 -         return np.array([]), 0
 - 
 - 
 - class ZhipuEmbed(Base):
 -     def __init__(self, key, model_name="embedding-2", **kwargs):
 -         self.client = ZhipuAI(api_key=key)
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list):
 -         arr = []
 -         tks_num = 0
 -         for txt in texts:
 -             res = self.client.embeddings.create(input=txt,
 -                                                 model=self.model_name)
 -             arr.append(res.data[0].embedding)
 -             tks_num += res.usage.total_tokens
 -         return np.array(arr), tks_num
 - 
 -     def encode_queries(self, text):
 -         res = self.client.embeddings.create(input=text,
 -                                             model=self.model_name)
 -         return np.array(res.data[0].embedding), res.usage.total_tokens
 - 
 - 
 - class OllamaEmbed(Base):
 -     def __init__(self, key, model_name, **kwargs):
 -         self.client = Client(host=kwargs["base_url"])
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list):
 -         arr = []
 -         tks_num = 0
 -         for txt in texts:
 -             res = self.client.embeddings(prompt=txt,
 -                                          model=self.model_name)
 -             arr.append(res["embedding"])
 -             tks_num += 128
 -         return np.array(arr), tks_num
 - 
 -     def encode_queries(self, text):
 -         res = self.client.embeddings(prompt=text,
 -                                      model=self.model_name)
 -         return np.array(res["embedding"]), 128
 - 
 - 
 - class FastEmbed(Base):
 -     _model = None
 -     _model_name = ""
 -     _model_lock = threading.Lock()
 - 
 -     def __init__(
 -             self,
 -             key: str | None = None,
 -             model_name: str = "BAAI/bge-small-en-v1.5",
 -             cache_dir: str | None = None,
 -             threads: int | None = None,
 -             **kwargs,
 -     ):
 -         if not settings.LIGHTEN and not FastEmbed._model:
 -             with FastEmbed._model_lock:
 -                 from fastembed import TextEmbedding
 -                 if not FastEmbed._model or model_name != FastEmbed._model_name:
 -                     try:
 -                         FastEmbed._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
 -                         FastEmbed._model_name = model_name
 -                     except Exception:
 -                         cache_dir = snapshot_download(repo_id="BAAI/bge-small-en-v1.5",
 -                                                       local_dir=os.path.join(get_home_cache_dir(),
 -                                                                              re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
 -                                                       local_dir_use_symlinks=False)
 -                         FastEmbed._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
 -         self._model = FastEmbed._model
 -         self._model_name = model_name
 - 
 -     def encode(self, texts: list):
 -         # Using the internal tokenizer to encode the texts and get the total
 -         # number of tokens
 -         encodings = self._model.model.tokenizer.encode_batch(texts)
 -         total_tokens = sum(len(e) for e in encodings)
 - 
 -         embeddings = [e.tolist() for e in self._model.embed(texts, batch_size=16)]
 - 
 -         return np.array(embeddings), total_tokens
 - 
 -     def encode_queries(self, text: str):
 -         # Using the internal tokenizer to encode the texts and get the total
 -         # number of tokens
 -         encoding = self._model.model.tokenizer.encode(text)
 -         embedding = next(self._model.query_embed(text)).tolist()
 - 
 -         return np.array(embedding), len(encoding.ids)
 - 
 - 
 - class XinferenceEmbed(Base):
 -     def __init__(self, key, model_name="", base_url=""):
 -         if base_url.split("/")[-1] != "v1":
 -             base_url = os.path.join(base_url, "v1")
 -         self.client = OpenAI(api_key=key, base_url=base_url)
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list):
 -         batch_size = 16
 -         ress = []
 -         total_tokens = 0
 -         for i in range(0, len(texts), batch_size):
 -             res = self.client.embeddings.create(input=texts[i:i + batch_size], model=self.model_name)
 -             ress.extend([d.embedding for d in res.data])
 -             total_tokens += res.usage.total_tokens
 -         return np.array(ress), total_tokens
 - 
 -     def encode_queries(self, text):
 -         res = self.client.embeddings.create(input=[text],
 -                                             model=self.model_name)
 -         return np.array(res.data[0].embedding), res.usage.total_tokens
 - 
 - 
 - class YoudaoEmbed(Base):
 -     _client = None
 - 
 -     def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
 -         if not settings.LIGHTEN and not YoudaoEmbed._client:
 -             from BCEmbedding import EmbeddingModel as qanthing
 -             try:
 -                 logging.info("LOADING BCE...")
 -                 YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(
 -                     get_home_cache_dir(),
 -                     "bce-embedding-base_v1"))
 -             except Exception:
 -                 YoudaoEmbed._client = qanthing(
 -                     model_name_or_path=model_name.replace(
 -                         "maidalun1020", "InfiniFlow"))
 - 
 -     def encode(self, texts: list):
 -         batch_size = 10
 -         res = []
 -         token_count = 0
 -         for t in texts:
 -             token_count += num_tokens_from_string(t)
 -         for i in range(0, len(texts), batch_size):
 -             embds = YoudaoEmbed._client.encode(texts[i:i + batch_size])
 -             res.extend(embds)
 -         return np.array(res), token_count
 - 
 -     def encode_queries(self, text):
 -         embds = YoudaoEmbed._client.encode([text])
 -         return np.array(embds[0]), num_tokens_from_string(text)
 - 
 - 
 - class JinaEmbed(Base):
 -     def __init__(self, key, model_name="jina-embeddings-v3",
 -                  base_url="https://api.jina.ai/v1/embeddings"):
 - 
 -         self.base_url = "https://api.jina.ai/v1/embeddings"
 -         self.headers = {
 -             "Content-Type": "application/json",
 -             "Authorization": f"Bearer {key}"
 -         }
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list):
 -         texts = [truncate(t, 8196) for t in texts]
 -         batch_size = 16
 -         ress = []
 -         token_count = 0
 -         for i in range(0, len(texts), batch_size):
 -             data = {
 -                 "model": self.model_name,
 -                 "input": texts[i:i + batch_size],
 -                 'encoding_type': 'float'
 -             }
 -             res = requests.post(self.base_url, headers=self.headers, json=data).json()
 -             ress.extend([d["embedding"] for d in res["data"]])
 -             token_count += res["usage"]["total_tokens"]
 -         return np.array(ress), token_count
 - 
 -     def encode_queries(self, text):
 -         embds, cnt = self.encode([text])
 -         return np.array(embds[0]), cnt
 - 
 - 
 - class InfinityEmbed(Base):
 -     _model = None
 - 
 -     def __init__(
 -             self,
 -             model_names: list[str] = ("BAAI/bge-small-en-v1.5",),
 -             engine_kwargs: dict = {},
 -             key = None,
 -     ):
 - 
 -         from infinity_emb import EngineArgs
 -         from infinity_emb.engine import AsyncEngineArray
 - 
 -         self._default_model = model_names[0]
 -         self.engine_array = AsyncEngineArray.from_args([EngineArgs(model_name_or_path = model_name, **engine_kwargs) for model_name in model_names])
 - 
 -     async def _embed(self, sentences: list[str], model_name: str = ""):
 -         if not model_name:
 -             model_name = self._default_model
 -         engine = self.engine_array[model_name]
 -         was_already_running = engine.is_running
 -         if not was_already_running:
 -             await engine.astart()
 -         embeddings, usage = await engine.embed(sentences=sentences)
 -         if not was_already_running:
 -             await engine.astop()
 -         return embeddings, usage
 - 
 -     def encode(self, texts: list[str], model_name: str = "") -> tuple[np.ndarray, int]:
 -         # Using the internal tokenizer to encode the texts and get the total
 -         # number of tokens
 -         embeddings, usage = asyncio.run(self._embed(texts, model_name))
 -         return np.array(embeddings), usage
 - 
 -     def encode_queries(self, text: str) -> tuple[np.ndarray, int]:
 -         # Using the internal tokenizer to encode the texts and get the total
 -         # number of tokens
 -         return self.encode([text])
 - 
 - 
 - class MistralEmbed(Base):
 -     def __init__(self, key, model_name="mistral-embed",
 -                  base_url=None):
 -         from mistralai.client import MistralClient
 -         self.client = MistralClient(api_key=key)
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list):
 -         texts = [truncate(t, 8196) for t in texts]
 -         batch_size = 16
 -         ress = []
 -         token_count = 0
 -         for i in range(0, len(texts), batch_size):
 -             res = self.client.embeddings(input=texts[i:i + batch_size],
 -                                         model=self.model_name)
 -             ress.extend([d.embedding for d in res.data])
 -             token_count += res.usage.total_tokens
 -         return np.array(ress), token_count
 - 
 -     def encode_queries(self, text):
 -         res = self.client.embeddings(input=[truncate(text, 8196)],
 -                                             model=self.model_name)
 -         return np.array(res.data[0].embedding), res.usage.total_tokens
 - 
 - 
 - class BedrockEmbed(Base):
 -     def __init__(self, key, model_name,
 -                  **kwargs):
 -         import boto3
 -         self.bedrock_ak = json.loads(key).get('bedrock_ak', '')
 -         self.bedrock_sk = json.loads(key).get('bedrock_sk', '')
 -         self.bedrock_region = json.loads(key).get('bedrock_region', '')
 -         self.model_name = model_name
 -         self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
 -                                    aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
 - 
 -     def encode(self, texts: list):
 -         texts = [truncate(t, 8196) for t in texts]
 -         embeddings = []
 -         token_count = 0
 -         for text in texts:
 -             if self.model_name.split('.')[0] == 'amazon':
 -                 body = {"inputText": text}
 -             elif self.model_name.split('.')[0] == 'cohere':
 -                 body = {"texts": [text], "input_type": 'search_document'}
 - 
 -             response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
 -             model_response = json.loads(response["body"].read())
 -             embeddings.extend([model_response["embedding"]])
 -             token_count += num_tokens_from_string(text)
 - 
 -         return np.array(embeddings), token_count
 - 
 -     def encode_queries(self, text):
 -         embeddings = []
 -         token_count = num_tokens_from_string(text)
 -         if self.model_name.split('.')[0] == 'amazon':
 -             body = {"inputText": truncate(text, 8196)}
 -         elif self.model_name.split('.')[0] == 'cohere':
 -             body = {"texts": [truncate(text, 8196)], "input_type": 'search_query'}
 - 
 -         response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
 -         model_response = json.loads(response["body"].read())
 -         embeddings.extend(model_response["embedding"])
 - 
 -         return np.array(embeddings), token_count
 - 
 - class GeminiEmbed(Base):
 -     def __init__(self, key, model_name='models/text-embedding-004',
 -                  **kwargs):
 -         self.key = key
 -         self.model_name = 'models/' + model_name
 -         
 -     def encode(self, texts: list):
 -         texts = [truncate(t, 2048) for t in texts]
 -         token_count = sum(num_tokens_from_string(text) for text in texts)
 -         genai.configure(api_key=self.key)
 -         batch_size = 16
 -         ress = []
 -         for i in range(0, len(texts), batch_size):
 -             result = genai.embed_content(
 -                 model=self.model_name,
 -                 content=texts[i, i + batch_size],
 -                 task_type="retrieval_document",
 -                 title="Embedding of single string")
 -             ress.extend(result['embedding'])
 -         return np.array(ress),token_count
 -     
 -     def encode_queries(self, text):
 -         genai.configure(api_key=self.key)
 -         result = genai.embed_content(
 -             model=self.model_name,
 -             content=truncate(text,2048),
 -             task_type="retrieval_document",
 -             title="Embedding of single string")
 -         token_count = num_tokens_from_string(text)
 -         return np.array(result['embedding']),token_count
 - 
 - class NvidiaEmbed(Base):
 -     def __init__(
 -         self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings"
 -     ):
 -         if not base_url:
 -             base_url = "https://integrate.api.nvidia.com/v1/embeddings"
 -         self.api_key = key
 -         self.base_url = base_url
 -         self.headers = {
 -             "accept": "application/json",
 -             "Content-Type": "application/json",
 -             "authorization": f"Bearer {self.api_key}",
 -         }
 -         self.model_name = model_name
 -         if model_name == "nvidia/embed-qa-4":
 -             self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings"
 -             self.model_name = "NV-Embed-QA"
 -         if model_name == "snowflake/arctic-embed-l":
 -             self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings"
 - 
 -     def encode(self, texts: list):
 -         batch_size = 16
 -         ress = []
 -         token_count = 0
 -         for i in range(0, len(texts), batch_size):
 -             payload = {
 -                 "input": texts[i : i + batch_size],
 -                 "input_type": "query",
 -                 "model": self.model_name,
 -                 "encoding_format": "float",
 -                 "truncate": "END",
 -             }
 -             res = requests.post(self.base_url, headers=self.headers, json=payload).json()
 -             ress.extend([d["embedding"] for d in res["data"]])
 -             token_count += res["usage"]["total_tokens"]
 -         return np.array(ress), token_count
 - 
 -     def encode_queries(self, text):
 -         embds, cnt = self.encode([text])
 -         return np.array(embds[0]), cnt
 - 
 - 
 - class LmStudioEmbed(LocalAIEmbed):
 -     def __init__(self, key, model_name, base_url):
 -         if not base_url:
 -             raise ValueError("Local llm url cannot be None")
 -         if base_url.split("/")[-1] != "v1":
 -             base_url = os.path.join(base_url, "v1")
 -         self.client = OpenAI(api_key="lm-studio", base_url=base_url)
 -         self.model_name = model_name
 - 
 - 
 - class OpenAI_APIEmbed(OpenAIEmbed):
 -     def __init__(self, key, model_name, base_url):
 -         if not base_url:
 -             raise ValueError("url cannot be None")
 -         if base_url.split("/")[-1] != "v1":
 -             base_url = os.path.join(base_url, "v1")
 -         self.client = OpenAI(api_key=key, base_url=base_url)
 -         self.model_name = model_name.split("___")[0]
 - 
 - 
 - class CoHereEmbed(Base):
 -     def __init__(self, key, model_name, base_url=None):
 -         from cohere import Client
 - 
 -         self.client = Client(api_key=key)
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list):
 -         batch_size = 16
 -         ress = []
 -         token_count = 0
 -         for i in range(0, len(texts), batch_size):
 -             res = self.client.embed(
 -                 texts=texts[i : i + batch_size],
 -                 model=self.model_name,
 -                 input_type="search_document",
 -                 embedding_types=["float"],
 -             )
 -             ress.extend([d for d in res.embeddings.float])
 -             token_count += res.meta.billed_units.input_tokens
 -         return np.array(ress), token_count
 - 
 -     def encode_queries(self, text):
 -         res = self.client.embed(
 -             texts=[text],
 -             model=self.model_name,
 -             input_type="search_query",
 -             embedding_types=["float"],
 -         )
 -         return np.array(res.embeddings.float[0]), int(
 -             res.meta.billed_units.input_tokens
 -         )
 - 
 - 
 - class TogetherAIEmbed(OllamaEmbed):
 -     def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
 -         if not base_url:
 -             base_url = "https://api.together.xyz/v1"
 -         super().__init__(key, model_name, base_url=base_url)
 - 
 - 
 - class PerfXCloudEmbed(OpenAIEmbed):
 -     def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
 -         if not base_url:
 -             base_url = "https://cloud.perfxlab.cn/v1"
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class UpstageEmbed(OpenAIEmbed):
 -     def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
 -         if not base_url:
 -             base_url = "https://api.upstage.ai/v1/solar"
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class SILICONFLOWEmbed(Base):
 -     def __init__(
 -         self, key, model_name, base_url="https://api.siliconflow.cn/v1/embeddings"
 -     ):
 -         if not base_url:
 -             base_url = "https://api.siliconflow.cn/v1/embeddings"
 -         self.headers = {
 -             "accept": "application/json",
 -             "content-type": "application/json",
 -             "authorization": f"Bearer {key}",
 -         }
 -         self.base_url = base_url
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list):
 -         batch_size = 16
 -         ress = []
 -         token_count = 0
 -         for i in range(0, len(texts), batch_size):
 -             texts_batch = texts[i : i + batch_size]
 -             payload = {
 -                 "model": self.model_name,
 -                 "input": texts_batch,
 -                 "encoding_format": "float",
 -             }
 -             res = requests.post(self.base_url, json=payload, headers=self.headers).json()
 -             if "data" not in res or not isinstance(res["data"], list) or len(res["data"]) != len(texts_batch):
 -                 raise ValueError(f"SILICONFLOWEmbed.encode got invalid response from {self.base_url}")
 -             ress.extend([d["embedding"] for d in res["data"]])
 -             token_count += res["usage"]["total_tokens"]
 -         return np.array(ress), token_count
 - 
 -     def encode_queries(self, text):
 -         payload = {
 -             "model": self.model_name,
 -             "input": text,
 -             "encoding_format": "float",
 -         }
 -         res = requests.post(self.base_url, json=payload, headers=self.headers).json()
 -         if "data" not in res or not isinstance(res["data"], list) or len(res["data"])!= 1:
 -             raise ValueError(f"SILICONFLOWEmbed.encode_queries got invalid response from {self.base_url}")
 -         return np.array(res["data"][0]["embedding"]), res["usage"]["total_tokens"]
 - 
 - 
 - class ReplicateEmbed(Base):
 -     def __init__(self, key, model_name, base_url=None):
 -         from replicate.client import Client
 - 
 -         self.model_name = model_name
 -         self.client = Client(api_token=key)
 - 
 -     def encode(self, texts: list):
 -         batch_size = 16
 -         token_count = sum([num_tokens_from_string(text) for text in texts])
 -         ress = []
 -         for i in range(0, len(texts), batch_size):
 -             res = self.client.run(self.model_name, input={"texts": texts[i : i + batch_size]})
 -             ress.extend(res)
 -         return np.array(ress), token_count
 - 
 -     def encode_queries(self, text):
 -         res = self.client.embed(self.model_name, input={"texts": [text]})
 -         return np.array(res), num_tokens_from_string(text)
 - 
 - 
 - class BaiduYiyanEmbed(Base):
 -     def __init__(self, key, model_name, base_url=None):
 -         import qianfan
 - 
 -         key = json.loads(key)
 -         ak = key.get("yiyan_ak", "")
 -         sk = key.get("yiyan_sk", "")
 -         self.client = qianfan.Embedding(ak=ak, sk=sk)
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list, batch_size=16):
 -         res = self.client.do(model=self.model_name, texts=texts).body
 -         return (
 -             np.array([r["embedding"] for r in res["data"]]),
 -             res["usage"]["total_tokens"],
 -         )
 - 
 -     def encode_queries(self, text):
 -         res = self.client.do(model=self.model_name, texts=[text]).body
 -         return (
 -             np.array([r["embedding"] for r in res["data"]]),
 -             res["usage"]["total_tokens"],
 -         )
 - 
 - 
 - class VoyageEmbed(Base):
 -     def __init__(self, key, model_name, base_url=None):
 -         import voyageai
 - 
 -         self.client = voyageai.Client(api_key=key)
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list):
 -         batch_size = 16
 -         ress = []
 -         token_count = 0
 -         for i in range(0, len(texts), batch_size):
 -             res = self.client.embed(
 -                 texts=texts[i : i + batch_size], model=self.model_name, input_type="document"
 -             )
 -             ress.extend(res.embeddings)
 -             token_count += res.total_tokens
 -         return np.array(ress), token_count
 - 
 -     def encode_queries(self, text):
 -         res = self.client.embed(
 -             texts=text, model=self.model_name, input_type="query"
 -             )
 -         return np.array(res.embeddings)[0], res.total_tokens
 - 
 - 
 - class HuggingFaceEmbed(Base):
 -     def __init__(self, key, model_name, base_url=None):
 -         if not model_name:
 -             raise ValueError("Model name cannot be None")
 -         self.key = key
 -         self.model_name = model_name.split("___")[0]
 -         self.base_url = base_url or "http://127.0.0.1:8080"
 - 
 -     def encode(self, texts: list):
 -         embeddings = []
 -         for text in texts:
 -             response = requests.post(
 -                 f"{self.base_url}/embed",
 -                 json={"inputs": text},
 -                 headers={'Content-Type': 'application/json'}
 -             )
 -             if response.status_code == 200:
 -                 embedding = response.json()
 -                 embeddings.append(embedding[0])
 -             else:
 -                 raise Exception(f"Error: {response.status_code} - {response.text}")
 -         return np.array(embeddings), sum([num_tokens_from_string(text) for text in texts])
 - 
 -     def encode_queries(self, text):
 -         response = requests.post(
 -             f"{self.base_url}/embed",
 -             json={"inputs": text},
 -             headers={'Content-Type': 'application/json'}
 -         )
 -         if response.status_code == 200:
 -             embedding = response.json()
 -             return np.array(embedding[0]), num_tokens_from_string(text)
 -         else:
 -             raise Exception(f"Error: {response.status_code} - {response.text}")
 - 
 - 
 - class VolcEngineEmbed(OpenAIEmbed):
 -     def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3"):
 -         if not base_url:
 -             base_url = "https://ark.cn-beijing.volces.com/api/v3"
 -         ark_api_key = json.loads(key).get('ark_api_key', '')
 -         model_name = json.loads(key).get('ep_id', '') + json.loads(key).get('endpoint_id', '')
 -         super().__init__(ark_api_key,model_name,base_url)
 
 
  |