| 
                        123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 | 
                        - # Copyright (c) 2024 Microsoft Corporation.
 - # Licensed under the MIT License
 - """
 - Reference:
 -  - [graphrag](https://github.com/microsoft/graphrag)
 - """
 - 
 - import logging
 - from typing import Any, cast, List
 - import html
 - from graspologic.partition import hierarchical_leiden
 - from graspologic.utils import largest_connected_component
 - 
 - import networkx as nx
 - from networkx import is_empty
 - 
 - log = logging.getLogger(__name__)
 - 
 - 
 - def _stabilize_graph(graph: nx.Graph) -> nx.Graph:
 -     """Ensure an undirected graph with the same relationships will always be read the same way."""
 -     fixed_graph = nx.DiGraph() if graph.is_directed() else nx.Graph()
 - 
 -     sorted_nodes = graph.nodes(data=True)
 -     sorted_nodes = sorted(sorted_nodes, key=lambda x: x[0])
 - 
 -     fixed_graph.add_nodes_from(sorted_nodes)
 -     edges = list(graph.edges(data=True))
 - 
 -     # If the graph is undirected, we create the edges in a stable way, so we get the same results
 -     # for example:
 -     # A -> B
 -     # in graph theory is the same as
 -     # B -> A
 -     # in an undirected graph
 -     # however, this can lead to downstream issues because sometimes
 -     # consumers read graph.nodes() which ends up being [A, B] and sometimes it's [B, A]
 -     # but they base some of their logic on the order of the nodes, so the order ends up being important
 -     # so we sort the nodes in the edge in a stable way, so that we always get the same order
 -     if not graph.is_directed():
 - 
 -         def _sort_source_target(edge):
 -             source, target, edge_data = edge
 -             if source > target:
 -                 temp = source
 -                 source = target
 -                 target = temp
 -             return source, target, edge_data
 - 
 -         edges = [_sort_source_target(edge) for edge in edges]
 - 
 -     def _get_edge_key(source: Any, target: Any) -> str:
 -         return f"{source} -> {target}"
 - 
 -     edges = sorted(edges, key=lambda x: _get_edge_key(x[0], x[1]))
 - 
 -     fixed_graph.add_edges_from(edges)
 -     return fixed_graph
 - 
 - 
 - def normalize_node_names(graph: nx.Graph | nx.DiGraph) -> nx.Graph | nx.DiGraph:
 -     """Normalize node names."""
 -     node_mapping = {node: html.unescape(node.upper().strip()) for node in graph.nodes()}  # type: ignore
 -     return nx.relabel_nodes(graph, node_mapping)
 - 
 - 
 - def stable_largest_connected_component(graph: nx.Graph) -> nx.Graph:
 -     """Return the largest connected component of the graph, with nodes and edges sorted in a stable way."""
 -     graph = graph.copy()
 -     graph = cast(nx.Graph, largest_connected_component(graph))
 -     graph = normalize_node_names(graph)
 -     return _stabilize_graph(graph)
 - 
 - 
 - def _compute_leiden_communities(
 -         graph: nx.Graph | nx.DiGraph,
 -         max_cluster_size: int,
 -         use_lcc: bool,
 -         seed=0xDEADBEEF,
 - ) -> dict[int, dict[str, int]]:
 -     """Return Leiden root communities."""
 -     results: dict[int, dict[str, int]] = {}
 -     if is_empty(graph): return results
 -     if use_lcc:
 -         graph = stable_largest_connected_component(graph)
 - 
 -     community_mapping = hierarchical_leiden(
 -         graph, max_cluster_size=max_cluster_size, random_seed=seed
 -     )
 -     for partition in community_mapping:
 -         results[partition.level] = results.get(partition.level, {})
 -         results[partition.level][partition.node] = partition.cluster
 - 
 -     return results
 - 
 - 
 - def run(graph: nx.Graph, args: dict[str, Any]) -> dict[int, dict[str, dict]]:
 -     """Run method definition."""
 -     max_cluster_size = args.get("max_cluster_size", 12)
 -     use_lcc = args.get("use_lcc", True)
 -     if args.get("verbose", False):
 -         log.info(
 -             "Running leiden with max_cluster_size=%s, lcc=%s", max_cluster_size, use_lcc
 -         )
 -     if not graph.nodes(): return {}
 - 
 -     node_id_to_community_map = _compute_leiden_communities(
 -         graph=graph,
 -         max_cluster_size=max_cluster_size,
 -         use_lcc=use_lcc,
 -         seed=args.get("seed", 0xDEADBEEF),
 -     )
 -     levels = args.get("levels")
 - 
 -     # If they don't pass in levels, use them all
 -     if levels is None:
 -         levels = sorted(node_id_to_community_map.keys())
 - 
 -     results_by_level: dict[int, dict[str, list[str]]] = {}
 -     for level in levels:
 -         result = {}
 -         results_by_level[level] = result
 -         for node_id, raw_community_id in node_id_to_community_map[level].items():
 -             community_id = str(raw_community_id)
 -             if community_id not in result:
 -                 result[community_id] = {"weight": 0, "nodes": []}
 -             result[community_id]["nodes"].append(node_id)
 -             result[community_id]["weight"] += graph.nodes[node_id].get("rank", 0) * graph.nodes[node_id].get("weight", 1)
 -         weights = [comm["weight"] for _, comm in result.items()]
 -         if not weights:continue
 -         max_weight = max(weights)
 -         for _, comm in result.items(): comm["weight"] /= max_weight
 - 
 -     return results_by_level
 - 
 - 
 - def add_community_info2graph(graph: nx.Graph, nodes: List[str], community_title):
 -     for n in nodes:
 -         if "communities" not in graph.nodes[n]:
 -             graph.nodes[n]["communities"] = []
 -         graph.nodes[n]["communities"].append(community_title)
 
 
  |