|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252 |
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import copy
- import re
- from io import BytesIO
- from xpinyin import Pinyin
- import numpy as np
- import pandas as pd
- from openpyxl import load_workbook
- from dateutil.parser import parse as datetime_parse
-
- from api.db.services.knowledgebase_service import KnowledgebaseService
- from rag.nlp import rag_tokenizer, is_english, tokenize, find_codec
- from deepdoc.parser import ExcelParser
-
-
- class Excel(ExcelParser):
- def __call__(self, fnm, binary=None, from_page=0,
- to_page=10000000000, callback=None):
- if not binary:
- wb = load_workbook(fnm)
- else:
- wb = load_workbook(BytesIO(binary))
- total = 0
- for sheetname in wb.sheetnames:
- total += len(list(wb[sheetname].rows))
-
- res, fails, done = [], [], 0
- rn = 0
- for sheetname in wb.sheetnames:
- ws = wb[sheetname]
- rows = list(ws.rows)
- if not rows:continue
- headers = [cell.value for cell in rows[0]]
- missed = set([i for i, h in enumerate(headers) if h is None])
- headers = [
- cell.value for i,
- cell in enumerate(
- rows[0]) if i not in missed]
- if not headers:continue
- data = []
- for i, r in enumerate(rows[1:]):
- rn += 1
- if rn - 1 < from_page:
- continue
- if rn - 1 >= to_page:
- break
- row = [
- cell.value for ii,
- cell in enumerate(r) if ii not in missed]
- if len(row) != len(headers):
- fails.append(str(i))
- continue
- data.append(row)
- done += 1
- res.append(pd.DataFrame(np.array(data), columns=headers))
-
- callback(0.3, ("Extract records: {}~{}".format(from_page + 1, min(to_page, from_page + rn)) + (
- f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
- return res
-
-
- def trans_datatime(s):
- try:
- return datetime_parse(s.strip()).strftime("%Y-%m-%d %H:%M:%S")
- except Exception as e:
- pass
-
-
- def trans_bool(s):
- if re.match(r"(true|yes|是|\*|✓|✔|☑|✅|√)$",
- str(s).strip(), flags=re.IGNORECASE):
- return "yes"
- if re.match(r"(false|no|否|⍻|×)$", str(s).strip(), flags=re.IGNORECASE):
- return "no"
-
-
- def column_data_type(arr):
- arr = list(arr)
- uni = len(set([a for a in arr if a is not None]))
- counts = {"int": 0, "float": 0, "text": 0, "datetime": 0, "bool": 0}
- trans = {t: f for f, t in
- [(int, "int"), (float, "float"), (trans_datatime, "datetime"), (trans_bool, "bool"), (str, "text")]}
- for a in arr:
- if a is None:
- continue
- if re.match(r"[+-]?[0-9]+(\.0+)?$", str(a).replace("%%", "")):
- counts["int"] += 1
- elif re.match(r"[+-]?[0-9.]+$", str(a).replace("%%", "")):
- counts["float"] += 1
- elif re.match(r"(true|yes|是|\*|✓|✔|☑|✅|√|false|no|否|⍻|×)$", str(a), flags=re.IGNORECASE):
- counts["bool"] += 1
- elif trans_datatime(str(a)):
- counts["datetime"] += 1
- else:
- counts["text"] += 1
- counts = sorted(counts.items(), key=lambda x: x[1] * -1)
- ty = counts[0][0]
- for i in range(len(arr)):
- if arr[i] is None:
- continue
- try:
- arr[i] = trans[ty](str(arr[i]))
- except Exception as e:
- arr[i] = None
- # if ty == "text":
- # if len(arr) > 128 and uni / len(arr) < 0.1:
- # ty = "keyword"
- return arr, ty
-
-
- def chunk(filename, binary=None, from_page=0, to_page=10000000000,
- lang="Chinese", callback=None, **kwargs):
- """
- Excel and csv(txt) format files are supported.
- For csv or txt file, the delimiter between columns is TAB.
- The first line must be column headers.
- Column headers must be meaningful terms inorder to make our NLP model understanding.
- It's good to enumerate some synonyms using slash '/' to separate, and even better to
- enumerate values using brackets like 'gender/sex(male, female)'.
- Here are some examples for headers:
- 1. supplier/vendor\tcolor(yellow, red, brown)\tgender/sex(male, female)\tsize(M,L,XL,XXL)
- 2. 姓名/名字\t电话/手机/微信\t最高学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)
-
- Every row in table will be treated as a chunk.
- """
-
- if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
- callback(0.1, "Start to parse.")
- excel_parser = Excel()
- dfs = excel_parser(
- filename,
- binary,
- from_page=from_page,
- to_page=to_page,
- callback=callback)
- elif re.search(r"\.(txt|csv)$", filename, re.IGNORECASE):
- callback(0.1, "Start to parse.")
- txt = ""
- if binary:
- encoding = find_codec(binary)
- txt = binary.decode(encoding, errors="ignore")
- else:
- with open(filename, "r") as f:
- while True:
- l = f.readline()
- if not l:
- break
- txt += l
- lines = txt.split("\n")
- fails = []
- headers = lines[0].split(kwargs.get("delimiter", "\t"))
- rows = []
- for i, line in enumerate(lines[1:]):
- if i < from_page:
- continue
- if i >= to_page:
- break
- row = [l for l in line.split(kwargs.get("delimiter", "\t"))]
- if len(row) != len(headers):
- fails.append(str(i))
- continue
- rows.append(row)
-
- callback(0.3, ("Extract records: {}~{}".format(from_page, min(len(lines), to_page)) + (
- f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
-
- dfs = [pd.DataFrame(np.array(rows), columns=headers)]
-
- else:
- raise NotImplementedError(
- "file type not supported yet(excel, text, csv supported)")
-
- res = []
- PY = Pinyin()
- fieds_map = {
- "text": "_tks",
- "int": "_long",
- "keyword": "_kwd",
- "float": "_flt",
- "datetime": "_dt",
- "bool": "_kwd"}
- for df in dfs:
- for n in ["id", "_id", "index", "idx"]:
- if n in df.columns:
- del df[n]
- clmns = df.columns.values
- txts = list(copy.deepcopy(clmns))
- py_clmns = [
- PY.get_pinyins(
- re.sub(
- r"(/.*|([^()]+?)|\([^()]+?\))",
- "",
- str(n)),
- '_')[0] for n in clmns]
- clmn_tys = []
- for j in range(len(clmns)):
- cln, ty = column_data_type(df[clmns[j]])
- clmn_tys.append(ty)
- df[clmns[j]] = cln
- if ty == "text":
- txts.extend([str(c) for c in cln if c])
- clmns_map = [(py_clmns[i].lower() + fieds_map[clmn_tys[i]], str(clmns[i]).replace("_", " "))
- for i in range(len(clmns))]
-
- eng = lang.lower() == "english" # is_english(txts)
- for ii, row in df.iterrows():
- d = {
- "docnm_kwd": filename,
- "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))
- }
- row_txt = []
- for j in range(len(clmns)):
- if row[clmns[j]] is None:
- continue
- if not str(row[clmns[j]]):
- continue
- if pd.isna(row[clmns[j]]):
- continue
- fld = clmns_map[j][0]
- d[fld] = row[clmns[j]] if clmn_tys[j] != "text" else rag_tokenizer.tokenize(
- row[clmns[j]])
- row_txt.append("{}:{}".format(clmns[j], row[clmns[j]]))
- if not row_txt:
- continue
- tokenize(d, "; ".join(row_txt), eng)
- res.append(d)
-
- KnowledgebaseService.update_parser_config(
- kwargs["kb_id"], {"field_map": {k: v for k, v in clmns_map}})
- callback(0.35, "")
-
- return res
-
-
- if __name__ == "__main__":
- import sys
-
- def dummy(prog=None, msg=""):
- pass
-
- chunk(sys.argv[1], callback=dummy)
|