|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- from tika import parser
- from io import BytesIO
- import re
- from rag.app import laws
- from rag.nlp import rag_tokenizer, tokenize, find_codec
- from deepdoc.parser import PdfParser, ExcelParser, PlainParser, HtmlParser
-
-
- class Pdf(PdfParser):
- def __call__(self, filename, binary=None, from_page=0,
- to_page=100000, zoomin=3, callback=None):
- callback(msg="OCR is running...")
- self.__images__(
- filename if not binary else binary,
- zoomin,
- from_page,
- to_page,
- callback
- )
- callback(msg="OCR finished")
-
- from timeit import default_timer as timer
- start = timer()
- self._layouts_rec(zoomin, drop=False)
- callback(0.63, "Layout analysis finished.")
- print("layouts:", timer() - start)
- self._table_transformer_job(zoomin)
- callback(0.65, "Table analysis finished.")
- self._text_merge()
- callback(0.67, "Text merging finished")
- tbls = self._extract_table_figure(True, zoomin, True, True)
- self._concat_downward()
-
- sections = [(b["text"], self.get_position(b, zoomin))
- for i, b in enumerate(self.boxes)]
- for (img, rows), poss in tbls:
- if not rows:continue
- sections.append((rows if isinstance(rows, str) else rows[0],
- [(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
- return [(txt, "") for txt, _ in sorted(sections, key=lambda x: (
- x[-1][0][0], x[-1][0][3], x[-1][0][1]))], None
-
-
- def chunk(filename, binary=None, from_page=0, to_page=100000,
- lang="Chinese", callback=None, **kwargs):
- """
- Supported file formats are docx, pdf, excel, txt.
- One file forms a chunk which maintains original text order.
- """
-
- eng = lang.lower() == "english" # is_english(cks)
-
- if re.search(r"\.docx$", filename, re.IGNORECASE):
- callback(0.1, "Start to parse.")
- sections = [txt for txt in laws.Docx()(filename, binary) if txt]
- callback(0.8, "Finish parsing.")
-
- elif re.search(r"\.pdf$", filename, re.IGNORECASE):
- pdf_parser = Pdf() if kwargs.get(
- "parser_config", {}).get(
- "layout_recognize", True) else PlainParser()
- sections, _ = pdf_parser(
- filename if not binary else binary, to_page=to_page, callback=callback)
- sections = [s for s, _ in sections if s]
-
- elif re.search(r"\.xlsx?$", filename, re.IGNORECASE):
- callback(0.1, "Start to parse.")
- excel_parser = ExcelParser()
- sections = excel_parser.html(binary, 1000000000)
-
- elif re.search(r"\.txt$", filename, re.IGNORECASE):
- callback(0.1, "Start to parse.")
- txt = ""
- if binary:
- encoding = find_codec(binary)
- txt = binary.decode(encoding, errors="ignore")
- else:
- with open(filename, "r") as f:
- while True:
- l = f.readline()
- if not l:
- break
- txt += l
- sections = txt.split("\n")
- sections = [s for s in sections if s]
- callback(0.8, "Finish parsing.")
-
- elif re.search(r"\.(htm|html)$", filename, re.IGNORECASE):
- callback(0.1, "Start to parse.")
- sections = HtmlParser()(filename, binary)
- sections = [s for s in sections if s]
- callback(0.8, "Finish parsing.")
-
- elif re.search(r"\.doc$", filename, re.IGNORECASE):
- callback(0.1, "Start to parse.")
- binary = BytesIO(binary)
- doc_parsed = parser.from_buffer(binary)
- sections = doc_parsed['content'].split('\n')
- sections = [l for l in sections if l]
- callback(0.8, "Finish parsing.")
-
- else:
- raise NotImplementedError(
- "file type not supported yet(doc, docx, pdf, txt supported)")
-
- doc = {
- "docnm_kwd": filename,
- "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))
- }
- doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
- tokenize(doc, "\n".join(sections), eng)
- return [doc]
-
-
- if __name__ == "__main__":
- import sys
-
- def dummy(prog=None, msg=""):
- pass
-
- chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)
|