|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import datetime
- import json
- import traceback
-
- from flask import request
- from flask_login import login_required, current_user
- from elasticsearch_dsl import Q
-
- from rag.app.qa import rmPrefix, beAdoc
- from rag.nlp import search, rag_tokenizer, keyword_extraction
- from rag.utils.es_conn import ELASTICSEARCH
- from rag.utils import rmSpace
- from api.db import LLMType, ParserType
- from api.db.services.knowledgebase_service import KnowledgebaseService
- from api.db.services.llm_service import TenantLLMService
- from api.db.services.user_service import UserTenantService
- from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
- from api.db.services.document_service import DocumentService
- from api.settings import RetCode, retrievaler, kg_retrievaler
- from api.utils.api_utils import get_json_result
- import hashlib
- import re
-
-
- @manager.route('/list', methods=['POST'])
- @login_required
- @validate_request("doc_id")
- def list_chunk():
- req = request.json
- doc_id = req["doc_id"]
- page = int(req.get("page", 1))
- size = int(req.get("size", 30))
- question = req.get("keywords", "")
- try:
- tenant_id = DocumentService.get_tenant_id(req["doc_id"])
- if not tenant_id:
- return get_data_error_result(retmsg="Tenant not found!")
- e, doc = DocumentService.get_by_id(doc_id)
- if not e:
- return get_data_error_result(retmsg="Document not found!")
- query = {
- "doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
- }
- if "available_int" in req:
- query["available_int"] = int(req["available_int"])
- sres = retrievaler.search(query, search.index_name(tenant_id))
- res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
- for id in sres.ids:
- d = {
- "chunk_id": id,
- "content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[
- id].get(
- "content_with_weight", ""),
- "doc_id": sres.field[id]["doc_id"],
- "docnm_kwd": sres.field[id]["docnm_kwd"],
- "important_kwd": sres.field[id].get("important_kwd", []),
- "img_id": sres.field[id].get("img_id", ""),
- "available_int": sres.field[id].get("available_int", 1),
- "positions": sres.field[id].get("position_int", "").split("\t")
- }
- if len(d["positions"]) % 5 == 0:
- poss = []
- for i in range(0, len(d["positions"]), 5):
- poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]),
- float(d["positions"][i + 3]), float(d["positions"][i + 4])])
- d["positions"] = poss
- res["chunks"].append(d)
- return get_json_result(data=res)
- except Exception as e:
- if str(e).find("not_found") > 0:
- return get_json_result(data=False, retmsg=f'No chunk found!',
- retcode=RetCode.DATA_ERROR)
- return server_error_response(e)
-
-
- @manager.route('/get', methods=['GET'])
- @login_required
- def get():
- chunk_id = request.args["chunk_id"]
- try:
- tenants = UserTenantService.query(user_id=current_user.id)
- if not tenants:
- return get_data_error_result(retmsg="Tenant not found!")
- res = ELASTICSEARCH.get(
- chunk_id, search.index_name(
- tenants[0].tenant_id))
- if not res.get("found"):
- return server_error_response("Chunk not found")
- id = res["_id"]
- res = res["_source"]
- res["chunk_id"] = id
- k = []
- for n in res.keys():
- if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
- k.append(n)
- for n in k:
- del res[n]
-
- return get_json_result(data=res)
- except Exception as e:
- if str(e).find("NotFoundError") >= 0:
- return get_json_result(data=False, retmsg=f'Chunk not found!',
- retcode=RetCode.DATA_ERROR)
- return server_error_response(e)
-
-
- @manager.route('/set', methods=['POST'])
- @login_required
- @validate_request("doc_id", "chunk_id", "content_with_weight",
- "important_kwd")
- def set():
- req = request.json
- d = {
- "id": req["chunk_id"],
- "content_with_weight": req["content_with_weight"]}
- d["content_ltks"] = rag_tokenizer.tokenize(req["content_with_weight"])
- d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
- d["important_kwd"] = req["important_kwd"]
- d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_kwd"]))
- if "available_int" in req:
- d["available_int"] = req["available_int"]
-
- try:
- tenant_id = DocumentService.get_tenant_id(req["doc_id"])
- if not tenant_id:
- return get_data_error_result(retmsg="Tenant not found!")
-
- embd_id = DocumentService.get_embd_id(req["doc_id"])
- embd_mdl = TenantLLMService.model_instance(
- tenant_id, LLMType.EMBEDDING.value, embd_id)
-
- e, doc = DocumentService.get_by_id(req["doc_id"])
- if not e:
- return get_data_error_result(retmsg="Document not found!")
-
- if doc.parser_id == ParserType.QA:
- arr = [
- t for t in re.split(
- r"[\n\t]",
- req["content_with_weight"]) if len(t) > 1]
- if len(arr) != 2:
- return get_data_error_result(
- retmsg="Q&A must be separated by TAB/ENTER key.")
- q, a = rmPrefix(arr[0]), rmPrefix(arr[1])
- d = beAdoc(d, arr[0], arr[1], not any(
- [rag_tokenizer.is_chinese(t) for t in q + a]))
-
- v, c = embd_mdl.encode([doc.name, req["content_with_weight"]])
- v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
- d["q_%d_vec" % len(v)] = v.tolist()
- ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
- return get_json_result(data=True)
- except Exception as e:
- return server_error_response(e)
-
-
- @manager.route('/switch', methods=['POST'])
- @login_required
- @validate_request("chunk_ids", "available_int", "doc_id")
- def switch():
- req = request.json
- try:
- tenant_id = DocumentService.get_tenant_id(req["doc_id"])
- if not tenant_id:
- return get_data_error_result(retmsg="Tenant not found!")
- if not ELASTICSEARCH.upsert([{"id": i, "available_int": int(req["available_int"])} for i in req["chunk_ids"]],
- search.index_name(tenant_id)):
- return get_data_error_result(retmsg="Index updating failure")
- return get_json_result(data=True)
- except Exception as e:
- return server_error_response(e)
-
-
- @manager.route('/rm', methods=['POST'])
- @login_required
- @validate_request("chunk_ids", "doc_id")
- def rm():
- req = request.json
- try:
- if not ELASTICSEARCH.deleteByQuery(
- Q("ids", values=req["chunk_ids"]), search.index_name(current_user.id)):
- return get_data_error_result(retmsg="Index updating failure")
- e, doc = DocumentService.get_by_id(req["doc_id"])
- if not e:
- return get_data_error_result(retmsg="Document not found!")
- deleted_chunk_ids = req["chunk_ids"]
- chunk_number = len(deleted_chunk_ids)
- DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
- return get_json_result(data=True)
- except Exception as e:
- return server_error_response(e)
-
-
- @manager.route('/create', methods=['POST'])
- @login_required
- @validate_request("doc_id", "content_with_weight")
- def create():
- req = request.json
- md5 = hashlib.md5()
- md5.update((req["content_with_weight"] + req["doc_id"]).encode("utf-8"))
- chunck_id = md5.hexdigest()
- d = {"id": chunck_id, "content_ltks": rag_tokenizer.tokenize(req["content_with_weight"]),
- "content_with_weight": req["content_with_weight"]}
- d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
- d["important_kwd"] = req.get("important_kwd", [])
- d["important_tks"] = rag_tokenizer.tokenize(" ".join(req.get("important_kwd", [])))
- d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
- d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
-
- try:
- e, doc = DocumentService.get_by_id(req["doc_id"])
- if not e:
- return get_data_error_result(retmsg="Document not found!")
- d["kb_id"] = [doc.kb_id]
- d["docnm_kwd"] = doc.name
- d["doc_id"] = doc.id
-
- tenant_id = DocumentService.get_tenant_id(req["doc_id"])
- if not tenant_id:
- return get_data_error_result(retmsg="Tenant not found!")
-
- embd_id = DocumentService.get_embd_id(req["doc_id"])
- embd_mdl = TenantLLMService.model_instance(
- tenant_id, LLMType.EMBEDDING.value, embd_id)
-
- v, c = embd_mdl.encode([doc.name, req["content_with_weight"]])
- v = 0.1 * v[0] + 0.9 * v[1]
- d["q_%d_vec" % len(v)] = v.tolist()
- ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
-
- DocumentService.increment_chunk_num(
- doc.id, doc.kb_id, c, 1, 0)
- return get_json_result(data={"chunk_id": chunck_id})
- except Exception as e:
- return server_error_response(e)
-
-
- @manager.route('/retrieval_test', methods=['POST'])
- @login_required
- @validate_request("kb_id", "question")
- def retrieval_test():
- req = request.json
- page = int(req.get("page", 1))
- size = int(req.get("size", 30))
- question = req["question"]
- kb_id = req["kb_id"]
- doc_ids = req.get("doc_ids", [])
- similarity_threshold = float(req.get("similarity_threshold", 0.2))
- vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
- top = int(req.get("top_k", 1024))
- try:
- e, kb = KnowledgebaseService.get_by_id(kb_id)
- if not e:
- return get_data_error_result(retmsg="Knowledgebase not found!")
-
- embd_mdl = TenantLLMService.model_instance(
- kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
-
- rerank_mdl = None
- if req.get("rerank_id"):
- rerank_mdl = TenantLLMService.model_instance(
- kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
-
- if req.get("keyword", False):
- chat_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.CHAT)
- question += keyword_extraction(chat_mdl, question)
-
- retr = retrievaler if kb.parser_id != ParserType.KG else kg_retrievaler
- ranks = retr.retrieval(question, embd_mdl, kb.tenant_id, [kb_id], page, size,
- similarity_threshold, vector_similarity_weight, top,
- doc_ids, rerank_mdl=rerank_mdl)
- for c in ranks["chunks"]:
- if "vector" in c:
- del c["vector"]
-
- return get_json_result(data=ranks)
- except Exception as e:
- if str(e).find("not_found") > 0:
- return get_json_result(data=False, retmsg=f'No chunk found! Check the chunk status please!',
- retcode=RetCode.DATA_ERROR)
- return server_error_response(e)
-
-
- @manager.route('/knowledge_graph', methods=['GET'])
- @login_required
- def knowledge_graph():
- doc_id = request.args["doc_id"]
- req = {
- "doc_ids":[doc_id],
- "knowledge_graph_kwd": ["graph", "mind_map"]
- }
- tenant_id = DocumentService.get_tenant_id(doc_id)
- sres = retrievaler.search(req, search.index_name(tenant_id))
- obj = {"graph": {}, "mind_map": {}}
- for id in sres.ids[:2]:
- ty = sres.field[id]["knowledge_graph_kwd"]
- try:
- obj[ty] = json.loads(sres.field[id]["content_with_weight"])
- except Exception as e:
- print(traceback.format_exc(), flush=True)
-
- return get_json_result(data=obj)
-
|