- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import logging
 - import re
 - from collections import defaultdict, Counter
 - from copy import deepcopy
 - from typing import Callable
 - import trio
 - import networkx as nx
 - 
 - from graphrag.general.graph_prompt import SUMMARIZE_DESCRIPTIONS_PROMPT
 - from graphrag.utils import get_llm_cache, set_llm_cache, handle_single_entity_extraction, \
 -     handle_single_relationship_extraction, split_string_by_multi_markers, flat_uniq_list, chat_limiter, get_from_to, GraphChange
 - from rag.llm.chat_model import Base as CompletionLLM
 - from rag.prompts import message_fit_in
 - from rag.utils import truncate
 - 
 - GRAPH_FIELD_SEP = "<SEP>"
 - DEFAULT_ENTITY_TYPES = ["organization", "person", "geo", "event", "category"]
 - ENTITY_EXTRACTION_MAX_GLEANINGS = 2
 - 
 - 
 - class Extractor:
 -     _llm: CompletionLLM
 - 
 -     def __init__(
 -         self,
 -         llm_invoker: CompletionLLM,
 -         language: str | None = "English",
 -         entity_types: list[str] | None = None,
 -     ):
 -         self._llm = llm_invoker
 -         self._language = language
 -         self._entity_types = entity_types or DEFAULT_ENTITY_TYPES
 - 
 -     def _chat(self, system, history, gen_conf):
 -         hist = deepcopy(history)
 -         conf = deepcopy(gen_conf)
 -         response = get_llm_cache(self._llm.llm_name, system, hist, conf)
 -         if response:
 -             return response
 -         _, system_msg = message_fit_in([{"role": "system", "content": system}], int(self._llm.max_length * 0.92))
 -         response = self._llm.chat(system_msg[0]["content"], hist, conf)
 -         response = re.sub(r"<think>.*</think>", "", response, flags=re.DOTALL)
 -         if response.find("**ERROR**") >= 0:
 -             logging.warning(f"Extractor._chat got error. response: {response}")
 -             return ""
 -         set_llm_cache(self._llm.llm_name, system, response, history, gen_conf)
 -         return response
 - 
 -     def _entities_and_relations(self, chunk_key: str, records: list, tuple_delimiter: str):
 -         maybe_nodes = defaultdict(list)
 -         maybe_edges = defaultdict(list)
 -         ent_types = [t.lower() for t in self._entity_types]
 -         for record in records:
 -             record_attributes = split_string_by_multi_markers(
 -                 record, [tuple_delimiter]
 -             )
 - 
 -             if_entities = handle_single_entity_extraction(
 -                 record_attributes, chunk_key
 -             )
 -             if if_entities is not None and if_entities.get("entity_type", "unknown").lower() in ent_types:
 -                 maybe_nodes[if_entities["entity_name"]].append(if_entities)
 -                 continue
 - 
 -             if_relation = handle_single_relationship_extraction(
 -                 record_attributes, chunk_key
 -             )
 -             if if_relation is not None:
 -                 maybe_edges[(if_relation["src_id"], if_relation["tgt_id"])].append(
 -                     if_relation
 -                 )
 -         return dict(maybe_nodes), dict(maybe_edges)
 - 
 -     async def __call__(
 -         self, doc_id: str, chunks: list[str],
 -             callback: Callable | None = None
 -     ):
 - 
 -         self.callback = callback
 -         start_ts = trio.current_time()
 -         out_results = []
 -         async with trio.open_nursery() as nursery:
 -             for i, ck in enumerate(chunks):
 -                 ck = truncate(ck, int(self._llm.max_length*0.8))
 -                 nursery.start_soon(self._process_single_content, (doc_id, ck), i, len(chunks), out_results)
 - 
 -         maybe_nodes = defaultdict(list)
 -         maybe_edges = defaultdict(list)
 -         sum_token_count = 0
 -         for m_nodes, m_edges, token_count in out_results:
 -             for k, v in m_nodes.items():
 -                 maybe_nodes[k].extend(v)
 -             for k, v in m_edges.items():
 -                 maybe_edges[tuple(sorted(k))].extend(v)
 -             sum_token_count += token_count
 -         now = trio.current_time()
 -         if callback:
 -             callback(msg = f"Entities and relationships extraction done, {len(maybe_nodes)} nodes, {len(maybe_edges)} edges, {sum_token_count} tokens, {now-start_ts:.2f}s.")
 -         start_ts = now
 -         logging.info("Entities merging...")
 -         all_entities_data = []
 -         async with trio.open_nursery() as nursery:
 -             for en_nm, ents in maybe_nodes.items():
 -                 nursery.start_soon(self._merge_nodes, en_nm, ents, all_entities_data)
 -         now = trio.current_time()
 -         if callback:
 -             callback(msg = f"Entities merging done, {now-start_ts:.2f}s.")
 - 
 -         start_ts = now
 -         logging.info("Relationships merging...")
 -         all_relationships_data = []
 -         async with trio.open_nursery() as nursery:
 -             for (src, tgt), rels in maybe_edges.items():
 -                 nursery.start_soon(self._merge_edges, src, tgt, rels, all_relationships_data)
 -         now = trio.current_time()
 -         if callback:
 -             callback(msg = f"Relationships merging done, {now-start_ts:.2f}s.")
 - 
 -         if not len(all_entities_data) and not len(all_relationships_data):
 -             logging.warning(
 -                 "Didn't extract any entities and relationships, maybe your LLM is not working"
 -             )
 - 
 -         if not len(all_entities_data):
 -             logging.warning("Didn't extract any entities")
 -         if not len(all_relationships_data):
 -             logging.warning("Didn't extract any relationships")
 - 
 -         return all_entities_data, all_relationships_data
 - 
 -     async def _merge_nodes(self, entity_name: str, entities: list[dict], all_relationships_data):
 -         if not entities:
 -             return
 -         entity_type = sorted(
 -             Counter(
 -                 [dp["entity_type"] for dp in entities]
 -             ).items(),
 -             key=lambda x: x[1],
 -             reverse=True,
 -         )[0][0]
 -         description = GRAPH_FIELD_SEP.join(
 -             sorted(set([dp["description"] for dp in entities]))
 -         )
 -         already_source_ids = flat_uniq_list(entities, "source_id")
 -         description = await self._handle_entity_relation_summary(entity_name, description)
 -         node_data = dict(
 -             entity_type=entity_type,
 -             description=description,
 -             source_id=already_source_ids,
 -         )
 -         node_data["entity_name"] = entity_name
 -         all_relationships_data.append(node_data)
 - 
 -     async def _merge_edges(
 -             self,
 -             src_id: str,
 -             tgt_id: str,
 -             edges_data: list[dict],
 -             all_relationships_data=None
 -     ):
 -         if not edges_data:
 -             return
 -         weight = sum([edge["weight"] for edge in edges_data])
 -         description = GRAPH_FIELD_SEP.join(sorted(set([edge["description"] for edge in edges_data])))
 -         description = await self._handle_entity_relation_summary(f"{src_id} -> {tgt_id}", description)
 -         keywords = flat_uniq_list(edges_data, "keywords")
 -         source_id = flat_uniq_list(edges_data, "source_id")
 -         edge_data = dict(
 -             src_id=src_id,
 -             tgt_id=tgt_id,
 -             description=description,
 -             keywords=keywords,
 -             weight=weight,
 -             source_id=source_id
 -         )
 -         all_relationships_data.append(edge_data)
 - 
 -     async def _merge_graph_nodes(self, graph: nx.Graph, nodes: list[str], change: GraphChange):
 -         if len(nodes) <= 1:
 -             return
 -         change.added_updated_nodes.add(nodes[0])
 -         change.removed_nodes.update(nodes[1:])
 -         nodes_set = set(nodes)
 -         node0_attrs = graph.nodes[nodes[0]]
 -         node0_neighbors = set(graph.neighbors(nodes[0]))
 -         for node1 in nodes[1:]:
 -             # Merge two nodes, keep "entity_name", "entity_type", "page_rank" unchanged.
 -             node1_attrs = graph.nodes[node1]
 -             node0_attrs["description"] += f"{GRAPH_FIELD_SEP}{node1_attrs['description']}"
 -             node0_attrs["source_id"] = sorted(set(node0_attrs["source_id"] + node1_attrs["source_id"]))
 -             for neighbor in graph.neighbors(node1):
 -                 change.removed_edges.add(get_from_to(node1, neighbor))
 -                 if neighbor not in nodes_set:
 -                     edge1_attrs = graph.get_edge_data(node1, neighbor)
 -                     if neighbor in node0_neighbors:
 -                         # Merge two edges
 -                         change.added_updated_edges.add(get_from_to(nodes[0], neighbor))
 -                         edge0_attrs = graph.get_edge_data(nodes[0], neighbor)
 -                         edge0_attrs["weight"] += edge1_attrs["weight"]
 -                         edge0_attrs["description"] += f"{GRAPH_FIELD_SEP}{edge1_attrs['description']}"
 -                         for attr in ["keywords", "source_id"]:
 -                             edge0_attrs[attr] = sorted(set(edge0_attrs[attr] + edge1_attrs[attr]))
 -                         edge0_attrs["description"] = await self._handle_entity_relation_summary(f"({nodes[0]}, {neighbor})", edge0_attrs["description"])
 -                         graph.add_edge(nodes[0], neighbor, **edge0_attrs)
 -                     else:
 -                         graph.add_edge(nodes[0], neighbor, **edge1_attrs)
 -             graph.remove_node(node1)
 -         node0_attrs["description"] = await self._handle_entity_relation_summary(nodes[0], node0_attrs["description"])
 -         graph.nodes[nodes[0]].update(node0_attrs)
 - 
 -     async def _handle_entity_relation_summary(
 -             self,
 -             entity_or_relation_name: str,
 -             description: str
 -     ) -> str:
 -         summary_max_tokens = 512
 -         use_description = truncate(description, summary_max_tokens)
 -         description_list=use_description.split(GRAPH_FIELD_SEP),
 -         if len(description_list) <= 12:
 -             return use_description
 -         prompt_template = SUMMARIZE_DESCRIPTIONS_PROMPT
 -         context_base = dict(
 -             entity_name=entity_or_relation_name,
 -             description_list=description_list,
 -             language=self._language,
 -         )
 -         use_prompt = prompt_template.format(**context_base)
 -         logging.info(f"Trigger summary: {entity_or_relation_name}")
 -         async with chat_limiter:
 -             summary = await trio.to_thread.run_sync(lambda: self._chat(use_prompt, [{"role": "user", "content": "Output: "}], {"temperature": 0.8}))
 -         return summary
 
 
  |