您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

python_api_reference.md 46KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737
  1. ---
  2. sidebar_position: 2
  3. slug: /python_api_reference
  4. ---
  5. # Python API
  6. A complete reference for RAGFlow's Python APIs. Before proceeding, please ensure you [have your RAGFlow API key ready for authentication](../guides/models/llm_api_key_setup.md).
  7. :::tip NOTE
  8. Run the following command to download the Python SDK:
  9. ```bash
  10. pip install ragflow-sdk
  11. ```
  12. :::
  13. ---
  14. ## ERROR CODES
  15. ---
  16. | Code | Message | Description |
  17. |------|----------------------|-----------------------------|
  18. | 400 | Bad Request | Invalid request parameters |
  19. | 401 | Unauthorized | Unauthorized access |
  20. | 403 | Forbidden | Access denied |
  21. | 404 | Not Found | Resource not found |
  22. | 500 | Internal Server Error| Server internal error |
  23. | 1001 | Invalid Chunk ID | Invalid Chunk ID |
  24. | 1002 | Chunk Update Failed | Chunk update failed |
  25. ---
  26. ## OpenAI-Compatible API
  27. ---
  28. ### Create chat completion
  29. Creates a model response for the given historical chat conversation via OpenAI's API.
  30. #### Parameters
  31. ##### model: `str`, *Required*
  32. The model used to generate the response. The server will parse this automatically, so you can set it to any value for now.
  33. ##### messages: `list[object]`, *Required*
  34. A list of historical chat messages used to generate the response. This must contain at least one message with the `user` role.
  35. ##### stream: `boolean`
  36. Whether to receive the response as a stream. Set this to `false` explicitly if you prefer to receive the entire response in one go instead of as a stream.
  37. #### Returns
  38. - Success: Response [message](https://platform.openai.com/docs/api-reference/chat/create) like OpenAI
  39. - Failure: `Exception`
  40. #### Examples
  41. ```python
  42. from openai import OpenAI
  43. model = "model"
  44. client = OpenAI(api_key="ragflow-api-key", base_url=f"http://ragflow_address/api/v1/chats_openai/<chat_id>")
  45. completion = client.chat.completions.create(
  46. model=model,
  47. messages=[
  48. {"role": "system", "content": "You are a helpful assistant."},
  49. {"role": "user", "content": "Who are you?"},
  50. ],
  51. stream=True
  52. )
  53. stream = True
  54. if stream:
  55. for chunk in completion:
  56. print(chunk)
  57. else:
  58. print(completion.choices[0].message.content)
  59. ```
  60. ## DATASET MANAGEMENT
  61. ---
  62. ### Create dataset
  63. ```python
  64. RAGFlow.create_dataset(
  65. name: str,
  66. avatar: Optional[str] = None,
  67. description: Optional[str] = None,
  68. embedding_model: Optional[str] = "BAAI/bge-large-zh-v1.5@BAAI",
  69. permission: str = "me",
  70. chunk_method: str = "naive",
  71. pagerank: int = 0,
  72. parser_config: DataSet.ParserConfig = None
  73. ) -> DataSet
  74. ```
  75. Creates a dataset.
  76. #### Parameters
  77. ##### name: `str`, *Required*
  78. The unique name of the dataset to create. It must adhere to the following requirements:
  79. - Maximum 128 characters.
  80. - Case-insensitive.
  81. ##### avatar: `str`
  82. Base64 encoding of the avatar. Defaults to `None`
  83. ##### description: `str`
  84. A brief description of the dataset to create. Defaults to `None`.
  85. ##### permission
  86. Specifies who can access the dataset to create. Available options:
  87. - `"me"`: (Default) Only you can manage the dataset.
  88. - `"team"`: All team members can manage the dataset.
  89. ##### chunk_method, `str`
  90. The chunking method of the dataset to create. Available options:
  91. - `"naive"`: General (default)
  92. - `"manual`: Manual
  93. - `"qa"`: Q&A
  94. - `"table"`: Table
  95. - `"paper"`: Paper
  96. - `"book"`: Book
  97. - `"laws"`: Laws
  98. - `"presentation"`: Presentation
  99. - `"picture"`: Picture
  100. - `"one"`: One
  101. - `"email"`: Email
  102. ##### pagerank, `int`
  103. The pagerank of the dataset to create. Defaults to `0`.
  104. ##### parser_config
  105. The parser configuration of the dataset. A `ParserConfig` object's attributes vary based on the selected `chunk_method`:
  106. - `chunk_method`=`"naive"`:
  107. `{"chunk_token_num":128,"delimiter":"\\n","html4excel":False,"layout_recognize":True,"raptor":{"use_raptor":False}}`.
  108. - `chunk_method`=`"qa"`:
  109. `{"raptor": {"use_raptor": False}}`
  110. - `chunk_method`=`"manuel"`:
  111. `{"raptor": {"use_raptor": False}}`
  112. - `chunk_method`=`"table"`:
  113. `None`
  114. - `chunk_method`=`"paper"`:
  115. `{"raptor": {"use_raptor": False}}`
  116. - `chunk_method`=`"book"`:
  117. `{"raptor": {"use_raptor": False}}`
  118. - `chunk_method`=`"laws"`:
  119. `{"raptor": {"use_raptor": False}}`
  120. - `chunk_method`=`"picture"`:
  121. `None`
  122. - `chunk_method`=`"presentation"`:
  123. `{"raptor": {"use_raptor": False}}`
  124. - `chunk_method`=`"one"`:
  125. `None`
  126. - `chunk_method`=`"knowledge-graph"`:
  127. `{"chunk_token_num":128,"delimiter":"\\n","entity_types":["organization","person","location","event","time"]}`
  128. - `chunk_method`=`"email"`:
  129. `None`
  130. #### Returns
  131. - Success: A `dataset` object.
  132. - Failure: `Exception`
  133. #### Examples
  134. ```python
  135. from ragflow_sdk import RAGFlow
  136. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  137. dataset = rag_object.create_dataset(name="kb_1")
  138. ```
  139. ---
  140. ### Delete datasets
  141. ```python
  142. RAGFlow.delete_datasets(ids: list[str] = None)
  143. ```
  144. Deletes datasets by ID.
  145. #### Parameters
  146. ##### ids: `list[str]`, *Required*
  147. The IDs of the datasets to delete. Defaults to `None`. If it is not specified, all datasets will be deleted.
  148. #### Returns
  149. - Success: No value is returned.
  150. - Failure: `Exception`
  151. #### Examples
  152. ```python
  153. rag_object.delete_datasets(ids=["id_1","id_2"])
  154. ```
  155. ---
  156. ### List datasets
  157. ```python
  158. RAGFlow.list_datasets(
  159. page: int = 1,
  160. page_size: int = 30,
  161. orderby: str = "create_time",
  162. desc: bool = True,
  163. id: str = None,
  164. name: str = None
  165. ) -> list[DataSet]
  166. ```
  167. Lists datasets.
  168. #### Parameters
  169. ##### page: `int`
  170. Specifies the page on which the datasets will be displayed. Defaults to `1`.
  171. ##### page_size: `int`
  172. The number of datasets on each page. Defaults to `30`.
  173. ##### orderby: `str`
  174. The field by which datasets should be sorted. Available options:
  175. - `"create_time"` (default)
  176. - `"update_time"`
  177. ##### desc: `bool`
  178. Indicates whether the retrieved datasets should be sorted in descending order. Defaults to `True`.
  179. ##### id: `str`
  180. The ID of the dataset to retrieve. Defaults to `None`.
  181. ##### name: `str`
  182. The name of the dataset to retrieve. Defaults to `None`.
  183. #### Returns
  184. - Success: A list of `DataSet` objects.
  185. - Failure: `Exception`.
  186. #### Examples
  187. ##### List all datasets
  188. ```python
  189. for dataset in rag_object.list_datasets():
  190. print(dataset)
  191. ```
  192. ##### Retrieve a dataset by ID
  193. ```python
  194. dataset = rag_object.list_datasets(id = "id_1")
  195. print(dataset[0])
  196. ```
  197. ---
  198. ### Update dataset
  199. ```python
  200. DataSet.update(update_message: dict)
  201. ```
  202. Updates configurations for the current dataset.
  203. #### Parameters
  204. ##### update_message: `dict[str, str|int]`, *Required*
  205. A dictionary representing the attributes to update, with the following keys:
  206. - `"name"`: `str` The revised name of the dataset.
  207. - `"embedding_model"`: `str` The updated embedding model name.
  208. - Ensure that `"chunk_count"` is `0` before updating `"embedding_model"`.
  209. - `"chunk_method"`: `str` The chunking method for the dataset. Available options:
  210. - `"naive"`: General
  211. - `"manual`: Manual
  212. - `"qa"`: Q&A
  213. - `"table"`: Table
  214. - `"paper"`: Paper
  215. - `"book"`: Book
  216. - `"laws"`: Laws
  217. - `"presentation"`: Presentation
  218. - `"picture"`: Picture
  219. - `"one"`: One
  220. - `"email"`: Email
  221. #### Returns
  222. - Success: No value is returned.
  223. - Failure: `Exception`
  224. #### Examples
  225. ```python
  226. from ragflow_sdk import RAGFlow
  227. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  228. dataset = rag_object.list_datasets(name="kb_name")
  229. dataset = dataset[0]
  230. dataset.update({"embedding_model":"BAAI/bge-zh-v1.5", "chunk_method":"manual"})
  231. ```
  232. ---
  233. ## FILE MANAGEMENT WITHIN DATASET
  234. ---
  235. ### Upload documents
  236. ```python
  237. DataSet.upload_documents(document_list: list[dict])
  238. ```
  239. Uploads documents to the current dataset.
  240. #### Parameters
  241. ##### document_list: `list[dict]`, *Required*
  242. A list of dictionaries representing the documents to upload, each containing the following keys:
  243. - `"display_name"`: (Optional) The file name to display in the dataset.
  244. - `"blob"`: (Optional) The binary content of the file to upload.
  245. #### Returns
  246. - Success: No value is returned.
  247. - Failure: `Exception`
  248. #### Examples
  249. ```python
  250. dataset = rag_object.create_dataset(name="kb_name")
  251. dataset.upload_documents([{"display_name": "1.txt", "blob": "<BINARY_CONTENT_OF_THE_DOC>"}, {"display_name": "2.pdf", "blob": "<BINARY_CONTENT_OF_THE_DOC>"}])
  252. ```
  253. ---
  254. ### Update document
  255. ```python
  256. Document.update(update_message:dict)
  257. ```
  258. Updates configurations for the current document.
  259. #### Parameters
  260. ##### update_message: `dict[str, str|dict[]]`, *Required*
  261. A dictionary representing the attributes to update, with the following keys:
  262. - `"display_name"`: `str` The name of the document to update.
  263. - `"meta_fields"`: `dict[str, Any]` The meta fields of the document.
  264. - `"chunk_method"`: `str` The parsing method to apply to the document.
  265. - `"naive"`: General
  266. - `"manual`: Manual
  267. - `"qa"`: Q&A
  268. - `"table"`: Table
  269. - `"paper"`: Paper
  270. - `"book"`: Book
  271. - `"laws"`: Laws
  272. - `"presentation"`: Presentation
  273. - `"picture"`: Picture
  274. - `"one"`: One
  275. - `"email"`: Email
  276. - `"parser_config"`: `dict[str, Any]` The parsing configuration for the document. Its attributes vary based on the selected `"chunk_method"`:
  277. - `"chunk_method"`=`"naive"`:
  278. `{"chunk_token_num":128,"delimiter":"\\n","html4excel":False,"layout_recognize":True,"raptor":{"use_raptor":False}}`.
  279. - `chunk_method`=`"qa"`:
  280. `{"raptor": {"use_raptor": False}}`
  281. - `chunk_method`=`"manuel"`:
  282. `{"raptor": {"use_raptor": False}}`
  283. - `chunk_method`=`"table"`:
  284. `None`
  285. - `chunk_method`=`"paper"`:
  286. `{"raptor": {"use_raptor": False}}`
  287. - `chunk_method`=`"book"`:
  288. `{"raptor": {"use_raptor": False}}`
  289. - `chunk_method`=`"laws"`:
  290. `{"raptor": {"use_raptor": False}}`
  291. - `chunk_method`=`"presentation"`:
  292. `{"raptor": {"use_raptor": False}}`
  293. - `chunk_method`=`"picture"`:
  294. `None`
  295. - `chunk_method`=`"one"`:
  296. `None`
  297. - `chunk_method`=`"knowledge-graph"`:
  298. `{"chunk_token_num":128,"delimiter":"\\n","entity_types":["organization","person","location","event","time"]}`
  299. - `chunk_method`=`"email"`:
  300. `None`
  301. #### Returns
  302. - Success: No value is returned.
  303. - Failure: `Exception`
  304. #### Examples
  305. ```python
  306. from ragflow_sdk import RAGFlow
  307. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  308. dataset = rag_object.list_datasets(id='id')
  309. dataset = dataset[0]
  310. doc = dataset.list_documents(id="wdfxb5t547d")
  311. doc = doc[0]
  312. doc.update([{"parser_config": {"chunk_token_count": 256}}, {"chunk_method": "manual"}])
  313. ```
  314. ---
  315. ### Download document
  316. ```python
  317. Document.download() -> bytes
  318. ```
  319. Downloads the current document.
  320. #### Returns
  321. The downloaded document in bytes.
  322. #### Examples
  323. ```python
  324. from ragflow_sdk import RAGFlow
  325. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  326. dataset = rag_object.list_datasets(id="id")
  327. dataset = dataset[0]
  328. doc = dataset.list_documents(id="wdfxb5t547d")
  329. doc = doc[0]
  330. open("~/ragflow.txt", "wb+").write(doc.download())
  331. print(doc)
  332. ```
  333. ---
  334. ### List documents
  335. ```python
  336. Dataset.list_documents(id:str =None, keywords: str=None, page: int=1, page_size:int = 30, order_by:str = "create_time", desc: bool = True) -> list[Document]
  337. ```
  338. Lists documents in the current dataset.
  339. #### Parameters
  340. ##### id: `str`
  341. The ID of the document to retrieve. Defaults to `None`.
  342. ##### keywords: `str`
  343. The keywords used to match document titles. Defaults to `None`.
  344. ##### page: `int`
  345. Specifies the page on which the documents will be displayed. Defaults to `1`.
  346. ##### page_size: `int`
  347. The maximum number of documents on each page. Defaults to `30`.
  348. ##### orderby: `str`
  349. The field by which documents should be sorted. Available options:
  350. - `"create_time"` (default)
  351. - `"update_time"`
  352. ##### desc: `bool`
  353. Indicates whether the retrieved documents should be sorted in descending order. Defaults to `True`.
  354. #### Returns
  355. - Success: A list of `Document` objects.
  356. - Failure: `Exception`.
  357. A `Document` object contains the following attributes:
  358. - `id`: The document ID. Defaults to `""`.
  359. - `name`: The document name. Defaults to `""`.
  360. - `thumbnail`: The thumbnail image of the document. Defaults to `None`.
  361. - `dataset_id`: The dataset ID associated with the document. Defaults to `None`.
  362. - `chunk_method` The chunking method name. Defaults to `"naive"`.
  363. - `source_type`: The source type of the document. Defaults to `"local"`.
  364. - `type`: Type or category of the document. Defaults to `""`. Reserved for future use.
  365. - `created_by`: `str` The creator of the document. Defaults to `""`.
  366. - `size`: `int` The document size in bytes. Defaults to `0`.
  367. - `token_count`: `int` The number of tokens in the document. Defaults to `0`.
  368. - `chunk_count`: `int` The number of chunks in the document. Defaults to `0`.
  369. - `progress`: `float` The current processing progress as a percentage. Defaults to `0.0`.
  370. - `progress_msg`: `str` A message indicating the current progress status. Defaults to `""`.
  371. - `process_begin_at`: `datetime` The start time of document processing. Defaults to `None`.
  372. - `process_duation`: `float` Duration of the processing in seconds. Defaults to `0.0`.
  373. - `run`: `str` The document's processing status:
  374. - `"UNSTART"` (default)
  375. - `"RUNNING"`
  376. - `"CANCEL"`
  377. - `"DONE"`
  378. - `"FAIL"`
  379. - `status`: `str` Reserved for future use.
  380. - `parser_config`: `ParserConfig` Configuration object for the parser. Its attributes vary based on the selected `chunk_method`:
  381. - `chunk_method`=`"naive"`:
  382. `{"chunk_token_num":128,"delimiter":"\\n","html4excel":False,"layout_recognize":True,"raptor":{"use_raptor":False}}`.
  383. - `chunk_method`=`"qa"`:
  384. `{"raptor": {"use_raptor": False}}`
  385. - `chunk_method`=`"manuel"`:
  386. `{"raptor": {"use_raptor": False}}`
  387. - `chunk_method`=`"table"`:
  388. `None`
  389. - `chunk_method`=`"paper"`:
  390. `{"raptor": {"use_raptor": False}}`
  391. - `chunk_method`=`"book"`:
  392. `{"raptor": {"use_raptor": False}}`
  393. - `chunk_method`=`"laws"`:
  394. `{"raptor": {"use_raptor": False}}`
  395. - `chunk_method`=`"presentation"`:
  396. `{"raptor": {"use_raptor": False}}`
  397. - `chunk_method`=`"picure"`:
  398. `None`
  399. - `chunk_method`=`"one"`:
  400. `None`
  401. - `chunk_method`=`"email"`:
  402. `None`
  403. #### Examples
  404. ```python
  405. from ragflow_sdk import RAGFlow
  406. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  407. dataset = rag_object.create_dataset(name="kb_1")
  408. filename1 = "~/ragflow.txt"
  409. blob = open(filename1 , "rb").read()
  410. dataset.upload_documents([{"name":filename1,"blob":blob}])
  411. for doc in dataset.list_documents(keywords="rag", page=0, page_size=12):
  412. print(doc)
  413. ```
  414. ---
  415. ### Delete documents
  416. ```python
  417. DataSet.delete_documents(ids: list[str] = None)
  418. ```
  419. Deletes documents by ID.
  420. #### Parameters
  421. ##### ids: `list[list]`
  422. The IDs of the documents to delete. Defaults to `None`. If it is not specified, all documents in the dataset will be deleted.
  423. #### Returns
  424. - Success: No value is returned.
  425. - Failure: `Exception`
  426. #### Examples
  427. ```python
  428. from ragflow_sdk import RAGFlow
  429. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  430. dataset = rag_object.list_datasets(name="kb_1")
  431. dataset = dataset[0]
  432. dataset.delete_documents(ids=["id_1","id_2"])
  433. ```
  434. ---
  435. ### Parse documents
  436. ```python
  437. DataSet.async_parse_documents(document_ids:list[str]) -> None
  438. ```
  439. Parses documents in the current dataset.
  440. #### Parameters
  441. ##### document_ids: `list[str]`, *Required*
  442. The IDs of the documents to parse.
  443. #### Returns
  444. - Success: No value is returned.
  445. - Failure: `Exception`
  446. #### Examples
  447. ```python
  448. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  449. dataset = rag_object.create_dataset(name="dataset_name")
  450. documents = [
  451. {'display_name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
  452. {'display_name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
  453. {'display_name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
  454. ]
  455. dataset.upload_documents(documents)
  456. documents = dataset.list_documents(keywords="test")
  457. ids = []
  458. for document in documents:
  459. ids.append(document.id)
  460. dataset.async_parse_documents(ids)
  461. print("Async bulk parsing initiated.")
  462. ```
  463. ---
  464. ### Stop parsing documents
  465. ```python
  466. DataSet.async_cancel_parse_documents(document_ids:list[str])-> None
  467. ```
  468. Stops parsing specified documents.
  469. #### Parameters
  470. ##### document_ids: `list[str]`, *Required*
  471. The IDs of the documents for which parsing should be stopped.
  472. #### Returns
  473. - Success: No value is returned.
  474. - Failure: `Exception`
  475. #### Examples
  476. ```python
  477. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  478. dataset = rag_object.create_dataset(name="dataset_name")
  479. documents = [
  480. {'display_name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
  481. {'display_name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
  482. {'display_name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
  483. ]
  484. dataset.upload_documents(documents)
  485. documents = dataset.list_documents(keywords="test")
  486. ids = []
  487. for document in documents:
  488. ids.append(document.id)
  489. dataset.async_parse_documents(ids)
  490. print("Async bulk parsing initiated.")
  491. dataset.async_cancel_parse_documents(ids)
  492. print("Async bulk parsing cancelled.")
  493. ```
  494. ---
  495. ## CHUNK MANAGEMENT WITHIN DATASET
  496. ---
  497. ### Add chunk
  498. ```python
  499. Document.add_chunk(content:str, important_keywords:list[str] = []) -> Chunk
  500. ```
  501. Adds a chunk to the current document.
  502. #### Parameters
  503. ##### content: `str`, *Required*
  504. The text content of the chunk.
  505. ##### important_keywords: `list[str]`
  506. The key terms or phrases to tag with the chunk.
  507. #### Returns
  508. - Success: A `Chunk` object.
  509. - Failure: `Exception`.
  510. A `Chunk` object contains the following attributes:
  511. - `id`: `str`: The chunk ID.
  512. - `content`: `str` The text content of the chunk.
  513. - `important_keywords`: `list[str]` A list of key terms or phrases tagged with the chunk.
  514. - `create_time`: `str` The time when the chunk was created (added to the document).
  515. - `create_timestamp`: `float` The timestamp representing the creation time of the chunk, expressed in seconds since January 1, 1970.
  516. - `dataset_id`: `str` The ID of the associated dataset.
  517. - `document_name`: `str` The name of the associated document.
  518. - `document_id`: `str` The ID of the associated document.
  519. - `available`: `bool` The chunk's availability status in the dataset. Value options:
  520. - `False`: Unavailable
  521. - `True`: Available (default)
  522. #### Examples
  523. ```python
  524. from ragflow_sdk import RAGFlow
  525. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  526. datasets = rag_object.list_datasets(id="123")
  527. dataset = datasets[0]
  528. doc = dataset.list_documents(id="wdfxb5t547d")
  529. doc = doc[0]
  530. chunk = doc.add_chunk(content="xxxxxxx")
  531. ```
  532. ---
  533. ### List chunks
  534. ```python
  535. Document.list_chunks(keywords: str = None, page: int = 1, page_size: int = 30, id : str = None) -> list[Chunk]
  536. ```
  537. Lists chunks in the current document.
  538. #### Parameters
  539. ##### keywords: `str`
  540. The keywords used to match chunk content. Defaults to `None`
  541. ##### page: `int`
  542. Specifies the page on which the chunks will be displayed. Defaults to `1`.
  543. ##### page_size: `int`
  544. The maximum number of chunks on each page. Defaults to `30`.
  545. ##### id: `str`
  546. The ID of the chunk to retrieve. Default: `None`
  547. #### Returns
  548. - Success: A list of `Chunk` objects.
  549. - Failure: `Exception`.
  550. #### Examples
  551. ```python
  552. from ragflow_sdk import RAGFlow
  553. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  554. dataset = rag_object.list_datasets("123")
  555. dataset = dataset[0]
  556. docs = dataset.list_documents(keywords="test", page=1, page_size=12)
  557. for chunk in docs[0].list_chunks(keywords="rag", page=0, page_size=12):
  558. print(chunk)
  559. ```
  560. ---
  561. ### Delete chunks
  562. ```python
  563. Document.delete_chunks(chunk_ids: list[str])
  564. ```
  565. Deletes chunks by ID.
  566. #### Parameters
  567. ##### chunk_ids: `list[str]`
  568. The IDs of the chunks to delete. Defaults to `None`. If it is not specified, all chunks of the current document will be deleted.
  569. #### Returns
  570. - Success: No value is returned.
  571. - Failure: `Exception`
  572. #### Examples
  573. ```python
  574. from ragflow_sdk import RAGFlow
  575. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  576. dataset = rag_object.list_datasets(id="123")
  577. dataset = dataset[0]
  578. doc = dataset.list_documents(id="wdfxb5t547d")
  579. doc = doc[0]
  580. chunk = doc.add_chunk(content="xxxxxxx")
  581. doc.delete_chunks(["id_1","id_2"])
  582. ```
  583. ---
  584. ### Update chunk
  585. ```python
  586. Chunk.update(update_message: dict)
  587. ```
  588. Updates content or configurations for the current chunk.
  589. #### Parameters
  590. ##### update_message: `dict[str, str|list[str]|int]` *Required*
  591. A dictionary representing the attributes to update, with the following keys:
  592. - `"content"`: `str` The text content of the chunk.
  593. - `"important_keywords"`: `list[str]` A list of key terms or phrases to tag with the chunk.
  594. - `"available"`: `bool` The chunk's availability status in the dataset. Value options:
  595. - `False`: Unavailable
  596. - `True`: Available (default)
  597. #### Returns
  598. - Success: No value is returned.
  599. - Failure: `Exception`
  600. #### Examples
  601. ```python
  602. from ragflow_sdk import RAGFlow
  603. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  604. dataset = rag_object.list_datasets(id="123")
  605. dataset = dataset[0]
  606. doc = dataset.list_documents(id="wdfxb5t547d")
  607. doc = doc[0]
  608. chunk = doc.add_chunk(content="xxxxxxx")
  609. chunk.update({"content":"sdfx..."})
  610. ```
  611. ---
  612. ### Retrieve chunks
  613. ```python
  614. RAGFlow.retrieve(question:str="", dataset_ids:list[str]=None, document_ids=list[str]=None, page:int=1, page_size:int=30, similarity_threshold:float=0.2, vector_similarity_weight:float=0.3, top_k:int=1024,rerank_id:str=None,keyword:bool=False,highlight:bool=False) -> list[Chunk]
  615. ```
  616. Retrieves chunks from specified datasets.
  617. #### Parameters
  618. ##### question: `str`, *Required*
  619. The user query or query keywords. Defaults to `""`.
  620. ##### dataset_ids: `list[str]`, *Required*
  621. The IDs of the datasets to search. Defaults to `None`.
  622. ##### document_ids: `list[str]`
  623. The IDs of the documents to search. Defaults to `None`. You must ensure all selected documents use the same embedding model. Otherwise, an error will occur.
  624. ##### page: `int`
  625. The starting index for the documents to retrieve. Defaults to `1`.
  626. ##### page_size: `int`
  627. The maximum number of chunks to retrieve. Defaults to `30`.
  628. ##### Similarity_threshold: `float`
  629. The minimum similarity score. Defaults to `0.2`.
  630. ##### vector_similarity_weight: `float`
  631. The weight of vector cosine similarity. Defaults to `0.3`. If x represents the vector cosine similarity, then (1 - x) is the term similarity weight.
  632. ##### top_k: `int`
  633. The number of chunks engaged in vector cosine computation. Defaults to `1024`.
  634. ##### rerank_id: `str`
  635. The ID of the rerank model. Defaults to `None`.
  636. ##### keyword: `bool`
  637. Indicates whether to enable keyword-based matching:
  638. - `True`: Enable keyword-based matching.
  639. - `False`: Disable keyword-based matching (default).
  640. ##### highlight: `bool`
  641. Specifies whether to enable highlighting of matched terms in the results:
  642. - `True`: Enable highlighting of matched terms.
  643. - `False`: Disable highlighting of matched terms (default).
  644. #### Returns
  645. - Success: A list of `Chunk` objects representing the document chunks.
  646. - Failure: `Exception`
  647. #### Examples
  648. ```python
  649. from ragflow_sdk import RAGFlow
  650. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  651. dataset = rag_object.list_datasets(name="ragflow")
  652. dataset = dataset[0]
  653. name = 'ragflow_test.txt'
  654. path = './test_data/ragflow_test.txt'
  655. documents =[{"display_name":"test_retrieve_chunks.txt","blob":open(path, "rb").read()}]
  656. docs = dataset.upload_documents(documents)
  657. doc = docs[0]
  658. doc.add_chunk(content="This is a chunk addition test")
  659. for c in rag_object.retrieve(dataset_ids=[dataset.id],document_ids=[doc.id]):
  660. print(c)
  661. ```
  662. ---
  663. ## CHAT ASSISTANT MANAGEMENT
  664. ---
  665. ### Create chat assistant
  666. ```python
  667. RAGFlow.create_chat(
  668. name: str,
  669. avatar: str = "",
  670. dataset_ids: list[str] = [],
  671. llm: Chat.LLM = None,
  672. prompt: Chat.Prompt = None
  673. ) -> Chat
  674. ```
  675. Creates a chat assistant.
  676. #### Parameters
  677. ##### name: `str`, *Required*
  678. The name of the chat assistant.
  679. ##### avatar: `str`
  680. Base64 encoding of the avatar. Defaults to `""`.
  681. ##### dataset_ids: `list[str]`
  682. The IDs of the associated datasets. Defaults to `[""]`.
  683. ##### llm: `Chat.LLM`
  684. The LLM settings for the chat assistant to create. Defaults to `None`. When the value is `None`, a dictionary with the following values will be generated as the default. An `LLM` object contains the following attributes:
  685. - `model_name`: `str`
  686. The chat model name. If it is `None`, the user's default chat model will be used.
  687. - `temperature`: `float`
  688. Controls the randomness of the model's predictions. A lower temperature results in more conservative responses, while a higher temperature yields more creative and diverse responses. Defaults to `0.1`.
  689. - `top_p`: `float`
  690. Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from. It focuses on the most likely words, cutting off the less probable ones. Defaults to `0.3`
  691. - `presence_penalty`: `float`
  692. This discourages the model from repeating the same information by penalizing words that have already appeared in the conversation. Defaults to `0.2`.
  693. - `frequency penalty`: `float`
  694. Similar to the presence penalty, this reduces the model’s tendency to repeat the same words frequently. Defaults to `0.7`.
  695. ##### prompt: `Chat.Prompt`
  696. Instructions for the LLM to follow. A `Prompt` object contains the following attributes:
  697. - `similarity_threshold`: `float` RAGFlow employs either a combination of weighted keyword similarity and weighted vector cosine similarity, or a combination of weighted keyword similarity and weighted reranking score during retrieval. If a similarity score falls below this threshold, the corresponding chunk will be excluded from the results. The default value is `0.2`.
  698. - `keywords_similarity_weight`: `float` This argument sets the weight of keyword similarity in the hybrid similarity score with vector cosine similarity or reranking model similarity. By adjusting this weight, you can control the influence of keyword similarity in relation to other similarity measures. The default value is `0.7`.
  699. - `top_n`: `int` This argument specifies the number of top chunks with similarity scores above the `similarity_threshold` that are fed to the LLM. The LLM will *only* access these 'top N' chunks. The default value is `8`.
  700. - `variables`: `list[dict[]]` This argument lists the variables to use in the 'System' field of **Chat Configurations**. Note that:
  701. - `knowledge` is a reserved variable, which represents the retrieved chunks.
  702. - All the variables in 'System' should be curly bracketed.
  703. - The default value is `[{"key": "knowledge", "optional": True}]`.
  704. - `rerank_model`: `str` If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to `""`.
  705. - `top_k`: `int` Refers to the process of reordering or selecting the top-k items from a list or set based on a specific ranking criterion. Default to 1024.
  706. - `empty_response`: `str` If nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is found, leave this blank. Defaults to `None`.
  707. - `opener`: `str` The opening greeting for the user. Defaults to `"Hi! I am your assistant, can I help you?"`.
  708. - `show_quote`: `bool` Indicates whether the source of text should be displayed. Defaults to `True`.
  709. - `prompt`: `str` The prompt content.
  710. #### Returns
  711. - Success: A `Chat` object representing the chat assistant.
  712. - Failure: `Exception`
  713. #### Examples
  714. ```python
  715. from ragflow_sdk import RAGFlow
  716. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  717. datasets = rag_object.list_datasets(name="kb_1")
  718. dataset_ids = []
  719. for dataset in datasets:
  720. dataset_ids.append(dataset.id)
  721. assistant = rag_object.create_chat("Miss R", dataset_ids=dataset_ids)
  722. ```
  723. ---
  724. ### Update chat assistant
  725. ```python
  726. Chat.update(update_message: dict)
  727. ```
  728. Updates configurations for the current chat assistant.
  729. #### Parameters
  730. ##### update_message: `dict[str, str|list[str]|dict[]]`, *Required*
  731. A dictionary representing the attributes to update, with the following keys:
  732. - `"name"`: `str` The revised name of the chat assistant.
  733. - `"avatar"`: `str` Base64 encoding of the avatar. Defaults to `""`
  734. - `"dataset_ids"`: `list[str]` The datasets to update.
  735. - `"llm"`: `dict` The LLM settings:
  736. - `"model_name"`, `str` The chat model name.
  737. - `"temperature"`, `float` Controls the randomness of the model's predictions. A lower temperature results in more conservative responses, while a higher temperature yields more creative and diverse responses.
  738. - `"top_p"`, `float` Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from.
  739. - `"presence_penalty"`, `float` This discourages the model from repeating the same information by penalizing words that have appeared in the conversation.
  740. - `"frequency penalty"`, `float` Similar to presence penalty, this reduces the model’s tendency to repeat the same words.
  741. - `"prompt"` : Instructions for the LLM to follow.
  742. - `"similarity_threshold"`: `float` RAGFlow employs either a combination of weighted keyword similarity and weighted vector cosine similarity, or a combination of weighted keyword similarity and weighted rerank score during retrieval. This argument sets the threshold for similarities between the user query and chunks. If a similarity score falls below this threshold, the corresponding chunk will be excluded from the results. The default value is `0.2`.
  743. - `"keywords_similarity_weight"`: `float` This argument sets the weight of keyword similarity in the hybrid similarity score with vector cosine similarity or reranking model similarity. By adjusting this weight, you can control the influence of keyword similarity in relation to other similarity measures. The default value is `0.7`.
  744. - `"top_n"`: `int` This argument specifies the number of top chunks with similarity scores above the `similarity_threshold` that are fed to the LLM. The LLM will *only* access these 'top N' chunks. The default value is `8`.
  745. - `"variables"`: `list[dict[]]` This argument lists the variables to use in the 'System' field of **Chat Configurations**. Note that:
  746. - `knowledge` is a reserved variable, which represents the retrieved chunks.
  747. - All the variables in 'System' should be curly bracketed.
  748. - The default value is `[{"key": "knowledge", "optional": True}]`.
  749. - `"rerank_model"`: `str` If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to `""`.
  750. - `"empty_response"`: `str` If nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is retrieved, leave this blank. Defaults to `None`.
  751. - `"opener"`: `str` The opening greeting for the user. Defaults to `"Hi! I am your assistant, can I help you?"`.
  752. - `"show_quote`: `bool` Indicates whether the source of text should be displayed Defaults to `True`.
  753. - `"prompt"`: `str` The prompt content.
  754. #### Returns
  755. - Success: No value is returned.
  756. - Failure: `Exception`
  757. #### Examples
  758. ```python
  759. from ragflow_sdk import RAGFlow
  760. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  761. datasets = rag_object.list_datasets(name="kb_1")
  762. dataset_id = datasets[0].id
  763. assistant = rag_object.create_chat("Miss R", dataset_ids=[dataset_id])
  764. assistant.update({"name": "Stefan", "llm": {"temperature": 0.8}, "prompt": {"top_n": 8}})
  765. ```
  766. ---
  767. ### Delete chat assistants
  768. ```python
  769. RAGFlow.delete_chats(ids: list[str] = None)
  770. ```
  771. Deletes chat assistants by ID.
  772. #### Parameters
  773. ##### ids: `list[str]`
  774. The IDs of the chat assistants to delete. Defaults to `None`. If it is empty or not specified, all chat assistants in the system will be deleted.
  775. #### Returns
  776. - Success: No value is returned.
  777. - Failure: `Exception`
  778. #### Examples
  779. ```python
  780. from ragflow_sdk import RAGFlow
  781. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  782. rag_object.delete_chats(ids=["id_1","id_2"])
  783. ```
  784. ---
  785. ### List chat assistants
  786. ```python
  787. RAGFlow.list_chats(
  788. page: int = 1,
  789. page_size: int = 30,
  790. orderby: str = "create_time",
  791. desc: bool = True,
  792. id: str = None,
  793. name: str = None
  794. ) -> list[Chat]
  795. ```
  796. Lists chat assistants.
  797. #### Parameters
  798. ##### page: `int`
  799. Specifies the page on which the chat assistants will be displayed. Defaults to `1`.
  800. ##### page_size: `int`
  801. The number of chat assistants on each page. Defaults to `30`.
  802. ##### orderby: `str`
  803. The attribute by which the results are sorted. Available options:
  804. - `"create_time"` (default)
  805. - `"update_time"`
  806. ##### desc: `bool`
  807. Indicates whether the retrieved chat assistants should be sorted in descending order. Defaults to `True`.
  808. ##### id: `str`
  809. The ID of the chat assistant to retrieve. Defaults to `None`.
  810. ##### name: `str`
  811. The name of the chat assistant to retrieve. Defaults to `None`.
  812. #### Returns
  813. - Success: A list of `Chat` objects.
  814. - Failure: `Exception`.
  815. #### Examples
  816. ```python
  817. from ragflow_sdk import RAGFlow
  818. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  819. for assistant in rag_object.list_chats():
  820. print(assistant)
  821. ```
  822. ---
  823. ## SESSION MANAGEMENT
  824. ---
  825. ### Create session with chat assistant
  826. ```python
  827. Chat.create_session(name: str = "New session") -> Session
  828. ```
  829. Creates a session with the current chat assistant.
  830. #### Parameters
  831. ##### name: `str`
  832. The name of the chat session to create.
  833. #### Returns
  834. - Success: A `Session` object containing the following attributes:
  835. - `id`: `str` The auto-generated unique identifier of the created session.
  836. - `name`: `str` The name of the created session.
  837. - `message`: `list[Message]` The opening message of the created session. Default: `[{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]`
  838. - `chat_id`: `str` The ID of the associated chat assistant.
  839. - Failure: `Exception`
  840. #### Examples
  841. ```python
  842. from ragflow_sdk import RAGFlow
  843. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  844. assistant = rag_object.list_chats(name="Miss R")
  845. assistant = assistant[0]
  846. session = assistant.create_session()
  847. ```
  848. ---
  849. ### Update chat assistant's session
  850. ```python
  851. Session.update(update_message: dict)
  852. ```
  853. Updates the current session of the current chat assistant.
  854. #### Parameters
  855. ##### update_message: `dict[str, Any]`, *Required*
  856. A dictionary representing the attributes to update, with only one key:
  857. - `"name"`: `str` The revised name of the session.
  858. #### Returns
  859. - Success: No value is returned.
  860. - Failure: `Exception`
  861. #### Examples
  862. ```python
  863. from ragflow_sdk import RAGFlow
  864. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  865. assistant = rag_object.list_chats(name="Miss R")
  866. assistant = assistant[0]
  867. session = assistant.create_session("session_name")
  868. session.update({"name": "updated_name"})
  869. ```
  870. ---
  871. ### List chat assistant's sessions
  872. ```python
  873. Chat.list_sessions(
  874. page: int = 1,
  875. page_size: int = 30,
  876. orderby: str = "create_time",
  877. desc: bool = True,
  878. id: str = None,
  879. name: str = None
  880. ) -> list[Session]
  881. ```
  882. Lists sessions associated with the current chat assistant.
  883. #### Parameters
  884. ##### page: `int`
  885. Specifies the page on which the sessions will be displayed. Defaults to `1`.
  886. ##### page_size: `int`
  887. The number of sessions on each page. Defaults to `30`.
  888. ##### orderby: `str`
  889. The field by which sessions should be sorted. Available options:
  890. - `"create_time"` (default)
  891. - `"update_time"`
  892. ##### desc: `bool`
  893. Indicates whether the retrieved sessions should be sorted in descending order. Defaults to `True`.
  894. ##### id: `str`
  895. The ID of the chat session to retrieve. Defaults to `None`.
  896. ##### name: `str`
  897. The name of the chat session to retrieve. Defaults to `None`.
  898. #### Returns
  899. - Success: A list of `Session` objects associated with the current chat assistant.
  900. - Failure: `Exception`.
  901. #### Examples
  902. ```python
  903. from ragflow_sdk import RAGFlow
  904. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  905. assistant = rag_object.list_chats(name="Miss R")
  906. assistant = assistant[0]
  907. for session in assistant.list_sessions():
  908. print(session)
  909. ```
  910. ---
  911. ### Delete chat assistant's sessions
  912. ```python
  913. Chat.delete_sessions(ids:list[str] = None)
  914. ```
  915. Deletes sessions of the current chat assistant by ID.
  916. #### Parameters
  917. ##### ids: `list[str]`
  918. The IDs of the sessions to delete. Defaults to `None`. If it is not specified, all sessions associated with the current chat assistant will be deleted.
  919. #### Returns
  920. - Success: No value is returned.
  921. - Failure: `Exception`
  922. #### Examples
  923. ```python
  924. from ragflow_sdk import RAGFlow
  925. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  926. assistant = rag_object.list_chats(name="Miss R")
  927. assistant = assistant[0]
  928. assistant.delete_sessions(ids=["id_1","id_2"])
  929. ```
  930. ---
  931. ### Converse with chat assistant
  932. ```python
  933. Session.ask(question: str = "", stream: bool = False, **kwargs) -> Optional[Message, iter[Message]]
  934. ```
  935. Asks a specified chat assistant a question to start an AI-powered conversation.
  936. :::tip NOTE
  937. In streaming mode, not all responses include a reference, as this depends on the system's judgement.
  938. :::
  939. #### Parameters
  940. ##### question: `str`, *Required*
  941. The question to start an AI-powered conversation. Default to `""`
  942. ##### stream: `bool`
  943. Indicates whether to output responses in a streaming way:
  944. - `True`: Enable streaming (default).
  945. - `False`: Disable streaming.
  946. ##### **kwargs
  947. The parameters in prompt(system).
  948. #### Returns
  949. - A `Message` object containing the response to the question if `stream` is set to `False`.
  950. - An iterator containing multiple `message` objects (`iter[Message]`) if `stream` is set to `True`
  951. The following shows the attributes of a `Message` object:
  952. ##### id: `str`
  953. The auto-generated message ID.
  954. ##### content: `str`
  955. The content of the message. Defaults to `"Hi! I am your assistant, can I help you?"`.
  956. ##### reference: `list[Chunk]`
  957. A list of `Chunk` objects representing references to the message, each containing the following attributes:
  958. - `id` `str`
  959. The chunk ID.
  960. - `content` `str`
  961. The content of the chunk.
  962. - `img_id` `str`
  963. The ID of the snapshot of the chunk. Applicable only when the source of the chunk is an image, PPT, PPTX, or PDF file.
  964. - `document_id` `str`
  965. The ID of the referenced document.
  966. - `document_name` `str`
  967. The name of the referenced document.
  968. - `position` `list[str]`
  969. The location information of the chunk within the referenced document.
  970. - `dataset_id` `str`
  971. The ID of the dataset to which the referenced document belongs.
  972. - `similarity` `float`
  973. A composite similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity. It is the weighted sum of `vector_similarity` and `term_similarity`.
  974. - `vector_similarity` `float`
  975. A vector similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity between vector embeddings.
  976. - `term_similarity` `float`
  977. A keyword similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity between keywords.
  978. #### Examples
  979. ```python
  980. from ragflow_sdk import RAGFlow
  981. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  982. assistant = rag_object.list_chats(name="Miss R")
  983. assistant = assistant[0]
  984. session = assistant.create_session()
  985. print("\n==================== Miss R =====================\n")
  986. print("Hello. What can I do for you?")
  987. while True:
  988. question = input("\n==================== User =====================\n> ")
  989. print("\n==================== Miss R =====================\n")
  990. cont = ""
  991. for ans in session.ask(question, stream=True):
  992. print(ans.content[len(cont):], end='', flush=True)
  993. cont = ans.content
  994. ```
  995. ---
  996. ### Create session with agent
  997. ```python
  998. Agent.create_session(**kwargs) -> Session
  999. ```
  1000. Creates a session with the current agent.
  1001. #### Parameters
  1002. ##### **kwargs
  1003. The parameters in `begin` component.
  1004. #### Returns
  1005. - Success: A `Session` object containing the following attributes:
  1006. - `id`: `str` The auto-generated unique identifier of the created session.
  1007. - `message`: `list[Message]` The messages of the created session assistant. Default: `[{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]`
  1008. - `agent_id`: `str` The ID of the associated agent.
  1009. - Failure: `Exception`
  1010. #### Examples
  1011. ```python
  1012. from ragflow_sdk import RAGFlow, Agent
  1013. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  1014. agent_id = "AGENT_ID"
  1015. agent = rag_object.list_agents(id = agent_id)[0]
  1016. session = agent.create_session()
  1017. ```
  1018. ---
  1019. ### Converse with agent
  1020. ```python
  1021. Session.ask(question: str="", stream: bool = False) -> Optional[Message, iter[Message]]
  1022. ```
  1023. Asks a specified agent a question to start an AI-powered conversation.
  1024. :::tip NOTE
  1025. In streaming mode, not all responses include a reference, as this depends on the system's judgement.
  1026. :::
  1027. #### Parameters
  1028. ##### question: `str`
  1029. The question to start an AI-powered conversation. Ifthe **Begin** component takes parameters, a question is not required.
  1030. ##### stream: `bool`
  1031. Indicates whether to output responses in a streaming way:
  1032. - `True`: Enable streaming (default).
  1033. - `False`: Disable streaming.
  1034. #### Returns
  1035. - A `Message` object containing the response to the question if `stream` is set to `False`
  1036. - An iterator containing multiple `message` objects (`iter[Message]`) if `stream` is set to `True`
  1037. The following shows the attributes of a `Message` object:
  1038. ##### id: `str`
  1039. The auto-generated message ID.
  1040. ##### content: `str`
  1041. The content of the message. Defaults to `"Hi! I am your assistant, can I help you?"`.
  1042. ##### reference: `list[Chunk]`
  1043. A list of `Chunk` objects representing references to the message, each containing the following attributes:
  1044. - `id` `str`
  1045. The chunk ID.
  1046. - `content` `str`
  1047. The content of the chunk.
  1048. - `image_id` `str`
  1049. The ID of the snapshot of the chunk. Applicable only when the source of the chunk is an image, PPT, PPTX, or PDF file.
  1050. - `document_id` `str`
  1051. The ID of the referenced document.
  1052. - `document_name` `str`
  1053. The name of the referenced document.
  1054. - `position` `list[str]`
  1055. The location information of the chunk within the referenced document.
  1056. - `dataset_id` `str`
  1057. The ID of the dataset to which the referenced document belongs.
  1058. - `similarity` `float`
  1059. A composite similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity. It is the weighted sum of `vector_similarity` and `term_similarity`.
  1060. - `vector_similarity` `float`
  1061. A vector similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity between vector embeddings.
  1062. - `term_similarity` `float`
  1063. A keyword similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity between keywords.
  1064. #### Examples
  1065. ```python
  1066. from ragflow_sdk import RAGFlow, Agent
  1067. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  1068. AGENT_id = "AGENT_ID"
  1069. agent = rag_object.list_agents(id = AGENT_id)[0]
  1070. session = agent.create_session()
  1071. print("\n===== Miss R ====\n")
  1072. print("Hello. What can I do for you?")
  1073. while True:
  1074. question = input("\n===== User ====\n> ")
  1075. print("\n==== Miss R ====\n")
  1076. cont = ""
  1077. for ans in session.ask(question, stream=True):
  1078. print(ans.content[len(cont):], end='', flush=True)
  1079. cont = ans.content
  1080. ```
  1081. ---
  1082. ### List agent sessions
  1083. ```python
  1084. Agent.list_sessions(
  1085. page: int = 1,
  1086. page_size: int = 30,
  1087. orderby: str = "update_time",
  1088. desc: bool = True,
  1089. id: str = None
  1090. ) -> List[Session]
  1091. ```
  1092. Lists sessions associated with the current agent.
  1093. #### Parameters
  1094. ##### page: `int`
  1095. Specifies the page on which the sessions will be displayed. Defaults to `1`.
  1096. ##### page_size: `int`
  1097. The number of sessions on each page. Defaults to `30`.
  1098. ##### orderby: `str`
  1099. The field by which sessions should be sorted. Available options:
  1100. - `"create_time"`
  1101. - `"update_time"`(default)
  1102. ##### desc: `bool`
  1103. Indicates whether the retrieved sessions should be sorted in descending order. Defaults to `True`.
  1104. ##### id: `str`
  1105. The ID of the agent session to retrieve. Defaults to `None`.
  1106. #### Returns
  1107. - Success: A list of `Session` objects associated with the current agent.
  1108. - Failure: `Exception`.
  1109. #### Examples
  1110. ```python
  1111. from ragflow_sdk import RAGFlow
  1112. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  1113. AGENT_id = "AGENT_ID"
  1114. agent = rag_object.list_agents(id = AGENT_id)[0]
  1115. sessons = agent.list_sessions()
  1116. for session in sessions:
  1117. print(session)
  1118. ```
  1119. ---
  1120. ### Delete agent's sessions
  1121. ```python
  1122. Agent.delete_sessions(ids: list[str] = None)
  1123. ```
  1124. Deletes sessions of a agent by ID.
  1125. #### Parameters
  1126. ##### ids: `list[str]`
  1127. The IDs of the sessions to delete. Defaults to `None`. If it is not specified, all sessions associated with the agent will be deleted.
  1128. #### Returns
  1129. - Success: No value is returned.
  1130. - Failure: `Exception`
  1131. #### Examples
  1132. ```python
  1133. from ragflow_sdk import RAGFlow
  1134. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  1135. AGENT_id = "AGENT_ID"
  1136. agent = rag_object.list_agents(id = AGENT_id)[0]
  1137. agent.delete_sessions(ids=["id_1","id_2"])
  1138. ```
  1139. ---
  1140. ## AGENT MANAGEMENT
  1141. ---
  1142. ### List agents
  1143. ```python
  1144. RAGFlow.list_agents(
  1145. page: int = 1,
  1146. page_size: int = 30,
  1147. orderby: str = "create_time",
  1148. desc: bool = True,
  1149. id: str = None,
  1150. title: str = None
  1151. ) -> List[Agent]
  1152. ```
  1153. Lists agents.
  1154. #### Parameters
  1155. ##### page: `int`
  1156. Specifies the page on which the agents will be displayed. Defaults to `1`.
  1157. ##### page_size: `int`
  1158. The number of agents on each page. Defaults to `30`.
  1159. ##### orderby: `str`
  1160. The attribute by which the results are sorted. Available options:
  1161. - `"create_time"` (default)
  1162. - `"update_time"`
  1163. ##### desc: `bool`
  1164. Indicates whether the retrieved agents should be sorted in descending order. Defaults to `True`.
  1165. ##### id: `str`
  1166. The ID of the agent to retrieve. Defaults to `None`.
  1167. ##### name: `str`
  1168. The name of the agent to retrieve. Defaults to `None`.
  1169. #### Returns
  1170. - Success: A list of `Agent` objects.
  1171. - Failure: `Exception`.
  1172. #### Examples
  1173. ```python
  1174. from ragflow_sdk import RAGFlow
  1175. rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
  1176. for agent in rag_object.list_agents():
  1177. print(agent)
  1178. ```
  1179. ---