- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import datetime
 - import json
 - import logging
 - import os
 - import hashlib
 - import copy
 - import re
 - import sys
 - from functools import partial
 - from timeit import default_timer as timer
 - 
 - from elasticsearch_dsl import Q
 - 
 - from api.db.services.task_service import TaskService
 - from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
 - from rag.utils import ELASTICSEARCH
 - from rag.utils import MINIO
 - from rag.utils import rmSpace, findMaxTm
 - 
 - from rag.nlp import search
 - from io import BytesIO
 - import pandas as pd
 - 
 - from rag.app import laws, paper, presentation, manual, qa, table, book, resume
 - 
 - from api.db import LLMType, ParserType
 - from api.db.services.document_service import DocumentService
 - from api.db.services.llm_service import LLMBundle
 - from api.settings import database_logger
 - from api.utils.file_utils import get_project_base_directory
 - 
 - BATCH_SIZE = 64
 - 
 - FACTORY = {
 -     ParserType.GENERAL.value: laws,
 -     ParserType.PAPER.value: paper,
 -     ParserType.BOOK.value: book,
 -     ParserType.PRESENTATION.value: presentation,
 -     ParserType.MANUAL.value: manual,
 -     ParserType.LAWS.value: laws,
 -     ParserType.QA.value: qa,
 -     ParserType.TABLE.value: table,
 -     ParserType.RESUME.value: resume,
 - }
 - 
 - 
 - def set_progress(task_id, from_page=0, to_page=-1, prog=None, msg="Processing..."):
 -     cancel = TaskService.do_cancel(task_id)
 -     if cancel:
 -         msg += " [Canceled]"
 -         prog = -1
 - 
 -     if to_page > 0: msg = f"Page({from_page}~{to_page}): " + msg
 -     d = {"progress_msg": msg}
 -     if prog is not None: d["progress"] = prog
 -     try:
 -         TaskService.update_progress(task_id, d)
 -     except Exception as e:
 -         cron_logger.error("set_progress:({}), {}".format(task_id, str(e)))
 - 
 -     if cancel:sys.exit()
 - 
 - 
 - """        
 - def chuck_doc(name, binary, tenant_id, cvmdl=None):
 -     suff = os.path.split(name)[-1].lower().split(".")[-1]
 -     if suff.find("pdf") >= 0:
 -         return PDF(binary)
 -     if suff.find("doc") >= 0:
 -         return DOC(binary)
 -     if re.match(r"(xlsx|xlsm|xltx|xltm)", suff):
 -         return EXC(binary)
 -     if suff.find("ppt") >= 0:
 -         return PPT(binary)
 -     if cvmdl and re.search(r"\.(jpg|jpeg|png|tif|gif|pcx|tga|exif|fpx|svg|psd|cdr|pcd|dxf|ufo|eps|ai|raw|WMF|webp|avif|apng|icon|ico)$",
 -                      name.lower()):
 -         txt = cvmdl.describe(binary)
 -         field = TextChunker.Fields()
 -         field.text_chunks = [(txt, binary)]
 -         field.table_chunks = []
 -         return field
 - 
 -     return TextChunker()(binary)
 - """
 - 
 - 
 - def collect(comm, mod, tm):
 -     tasks = TaskService.get_tasks(tm, mod, comm)
 -     if len(tasks) == 0:
 -         return pd.DataFrame()
 -     tasks = pd.DataFrame(tasks)
 -     mtm = tasks["update_time"].max()
 -     cron_logger.info("TOTAL:{}, To:{}".format(len(tasks), mtm))
 -     return tasks
 - 
 - 
 - def build(row, cvmdl):
 -     if row["size"] > DOC_MAXIMUM_SIZE:
 -         set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
 -                      (int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
 -         return []
 - 
 -     callback = partial(set_progress, row["id"], row["from_page"], row["to_page"])
 -     chunker = FACTORY[row["parser_id"].lower()]
 -     try:
 -         cron_logger.info("Chunkking {}/{}".format(row["location"], row["name"]))
 -         cks = chunker.chunk(row["name"], MINIO.get(row["kb_id"], row["location"]), row["from_page"], row["to_page"],
 -                             callback, kb_id=row["kb_id"], parser_config=row["parser_config"])
 -     except Exception as e:
 -         if re.search("(No such file|not found)", str(e)):
 -             callback(-1, "Can not find file <%s>" % row["doc_name"])
 -         else:
 -             callback(-1, f"Internal server error: %s" % str(e).replace("'", ""))
 - 
 -         cron_logger.warn("Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))
 - 
 -         return []
 - 
 -     callback(msg="Finished slicing files. Start to embedding the content.")
 - 
 -     docs = []
 -     doc = {
 -         "doc_id": row["doc_id"],
 -         "kb_id": [str(row["kb_id"])]
 -     }
 -     for ck in cks:
 -         d = copy.deepcopy(doc)
 -         d.update(ck)
 -         md5 = hashlib.md5()
 -         md5.update((ck["content_with_weight"] + str(d["doc_id"])).encode("utf-8"))
 -         d["_id"] = md5.hexdigest()
 -         d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
 -         d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
 -         if not d.get("image"):
 -             docs.append(d)
 -             continue
 - 
 -         output_buffer = BytesIO()
 -         if isinstance(d["image"], bytes):
 -             output_buffer = BytesIO(d["image"])
 -         else:
 -             d["image"].save(output_buffer, format='JPEG')
 - 
 -         MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
 -         d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
 -         del d["image"]
 -         docs.append(d)
 - 
 -     return docs
 - 
 - 
 - def init_kb(row):
 -     idxnm = search.index_name(row["tenant_id"])
 -     if ELASTICSEARCH.indexExist(idxnm):
 -         return
 -     return ELASTICSEARCH.createIdx(idxnm, json.load(
 -         open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))
 - 
 - 
 - def embedding(docs, mdl, parser_config={}):
 -     tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [d["content_with_weight"] for d in docs]
 -     tk_count = 0
 -     if len(tts) == len(cnts):
 -         tts, c = mdl.encode(tts)
 -         tk_count += c
 - 
 -     cnts, c = mdl.encode(cnts)
 -     tk_count += c
 -     title_w = float(parser_config.get("filename_embd_weight", 0.1))
 -     vects = (title_w * tts + (1-title_w) * cnts) if len(tts) == len(cnts) else cnts
 - 
 -     assert len(vects) == len(docs)
 -     for i, d in enumerate(docs):
 -         v = vects[i].tolist()
 -         d["q_%d_vec" % len(v)] = v
 -     return tk_count
 - 
 - 
 - def main(comm, mod):
 -     tm_fnm = os.path.join(get_project_base_directory(), "rag/res", f"{comm}-{mod}.tm")
 -     tm = findMaxTm(tm_fnm)
 -     rows = collect(comm, mod, tm)
 -     if len(rows) == 0:
 -         return
 - 
 -     tmf = open(tm_fnm, "a+")
 -     for _, r in rows.iterrows():
 -         callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
 -         try:
 -             embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING)
 -             cv_mdl = LLMBundle(r["tenant_id"], LLMType.IMAGE2TEXT)
 -             # TODO: sequence2text model
 -         except Exception as e:
 -             callback(prog=-1, msg=str(e))
 -             continue
 - 
 -         st_tm = timer()
 -         cks = build(r, cv_mdl)
 -         if not cks:
 -             tmf.write(str(r["update_time"]) + "\n")
 -             callback(1., "No chunk! Done!")
 -             continue
 -         # TODO: exception handler
 -         ## set_progress(r["did"], -1, "ERROR: ")
 -         try:
 -             tk_count = embedding(cks, embd_mdl, r["parser_config"])
 -         except Exception as e:
 -             callback(-1, "Embedding error:{}".format(str(e)))
 -             cron_logger.error(str(e))
 - 
 -         callback(msg="Finished embedding! Start to build index!")
 -         init_kb(r)
 -         chunk_count = len(set([c["_id"] for c in cks]))
 -         es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"]))
 -         if es_r:
 -             callback(-1, "Index failure!")
 -             cron_logger.error(str(es_r))
 -         else:
 -             if TaskService.do_cancel(r["id"]):
 -                 ELASTICSEARCH.deleteByQuery(Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
 -                 continue
 -             callback(1., "Done!")
 -             DocumentService.increment_chunk_num(r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
 -             cron_logger.info("Chunk doc({}), token({}), chunks({})".format(r["id"], tk_count, len(cks)))
 - 
 -         tmf.write(str(r["update_time"]) + "\n")
 -     tmf.close()
 - 
 - 
 - if __name__ == "__main__":
 -     peewee_logger = logging.getLogger('peewee')
 -     peewee_logger.propagate = False
 -     peewee_logger.addHandler(database_logger.handlers[0])
 -     peewee_logger.setLevel(database_logger.level)
 - 
 -     from mpi4py import MPI
 - 
 -     comm = MPI.COMM_WORLD
 -     main(comm.Get_size(), comm.Get_rank())
 
 
  |