- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - 
 - # from beartype import BeartypeConf
 - # from beartype.claw import beartype_all  # <-- you didn't sign up for this
 - # beartype_all(conf=BeartypeConf(violation_type=UserWarning))    # <-- emit warnings from all code
 - import random
 - import sys
 - import threading
 - import time
 - 
 - from api.utils.log_utils import initRootLogger, get_project_base_directory
 - from graphrag.general.index import run_graphrag
 - from graphrag.utils import get_llm_cache, set_llm_cache, get_tags_from_cache, set_tags_to_cache
 - from rag.prompts import keyword_extraction, question_proposal, content_tagging
 - 
 - import logging
 - import os
 - from datetime import datetime
 - import json
 - import xxhash
 - import copy
 - import re
 - from functools import partial
 - from io import BytesIO
 - from multiprocessing.context import TimeoutError
 - from timeit import default_timer as timer
 - import tracemalloc
 - import signal
 - import trio
 - import exceptiongroup
 - import faulthandler
 - 
 - import numpy as np
 - from peewee import DoesNotExist
 - 
 - from api.db import LLMType, ParserType, TaskStatus
 - from api.db.services.document_service import DocumentService
 - from api.db.services.llm_service import LLMBundle
 - from api.db.services.task_service import TaskService
 - from api.db.services.file2document_service import File2DocumentService
 - from api import settings
 - from api.versions import get_ragflow_version
 - from api.db.db_models import close_connection
 - from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one, audio, \
 -     email, tag
 - from rag.nlp import search, rag_tokenizer
 - from rag.raptor import RecursiveAbstractiveProcessing4TreeOrganizedRetrieval as Raptor
 - from rag.settings import DOC_MAXIMUM_SIZE, SVR_CONSUMER_GROUP_NAME, get_svr_queue_name, get_svr_queue_names, print_rag_settings, TAG_FLD, PAGERANK_FLD
 - from rag.utils import num_tokens_from_string, truncate
 - from rag.utils.redis_conn import REDIS_CONN, RedisDistributedLock
 - from rag.utils.storage_factory import STORAGE_IMPL
 - from graphrag.utils import chat_limiter
 - 
 - BATCH_SIZE = 64
 - 
 - FACTORY = {
 -     "general": naive,
 -     ParserType.NAIVE.value: naive,
 -     ParserType.PAPER.value: paper,
 -     ParserType.BOOK.value: book,
 -     ParserType.PRESENTATION.value: presentation,
 -     ParserType.MANUAL.value: manual,
 -     ParserType.LAWS.value: laws,
 -     ParserType.QA.value: qa,
 -     ParserType.TABLE.value: table,
 -     ParserType.RESUME.value: resume,
 -     ParserType.PICTURE.value: picture,
 -     ParserType.ONE.value: one,
 -     ParserType.AUDIO.value: audio,
 -     ParserType.EMAIL.value: email,
 -     ParserType.KG.value: naive,
 -     ParserType.TAG.value: tag
 - }
 - 
 - UNACKED_ITERATOR = None
 - 
 - CONSUMER_NO = "0" if len(sys.argv) < 2 else sys.argv[1]
 - CONSUMER_NAME = "task_executor_" + CONSUMER_NO
 - BOOT_AT = datetime.now().astimezone().isoformat(timespec="milliseconds")
 - PENDING_TASKS = 0
 - LAG_TASKS = 0
 - DONE_TASKS = 0
 - FAILED_TASKS = 0
 - 
 - CURRENT_TASKS = {}
 - 
 - MAX_CONCURRENT_TASKS = int(os.environ.get('MAX_CONCURRENT_TASKS', "5"))
 - MAX_CONCURRENT_CHUNK_BUILDERS = int(os.environ.get('MAX_CONCURRENT_CHUNK_BUILDERS', "1"))
 - MAX_CONCURRENT_MINIO = int(os.environ.get('MAX_CONCURRENT_MINIO', '10'))
 - task_limiter = trio.CapacityLimiter(MAX_CONCURRENT_TASKS)
 - chunk_limiter = trio.CapacityLimiter(MAX_CONCURRENT_CHUNK_BUILDERS)
 - minio_limiter = trio.CapacityLimiter(MAX_CONCURRENT_MINIO)
 - WORKER_HEARTBEAT_TIMEOUT = int(os.environ.get('WORKER_HEARTBEAT_TIMEOUT', '120'))
 - stop_event = threading.Event()
 - 
 - 
 - def signal_handler(sig, frame):
 -     logging.info("Received interrupt signal, shutting down...")
 -     stop_event.set()
 -     time.sleep(1)
 -     sys.exit(0)
 - 
 - 
 - # SIGUSR1 handler: start tracemalloc and take snapshot
 - def start_tracemalloc_and_snapshot(signum, frame):
 -     if not tracemalloc.is_tracing():
 -         logging.info("start tracemalloc")
 -         tracemalloc.start()
 -     else:
 -         logging.info("tracemalloc is already running")
 - 
 -     timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
 -     snapshot_file = f"snapshot_{timestamp}.trace"
 -     snapshot_file = os.path.abspath(os.path.join(get_project_base_directory(), "logs", f"{os.getpid()}_snapshot_{timestamp}.trace"))
 - 
 -     snapshot = tracemalloc.take_snapshot()
 -     snapshot.dump(snapshot_file)
 -     current, peak = tracemalloc.get_traced_memory()
 -     if sys.platform == "win32":
 -         import  psutil
 -         process = psutil.Process()
 -         max_rss = process.memory_info().rss / 1024
 -     else:
 -         import resource
 -         max_rss = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
 -     logging.info(f"taken snapshot {snapshot_file}. max RSS={max_rss / 1000:.2f} MB, current memory usage: {current / 10**6:.2f} MB, Peak memory usage: {peak / 10**6:.2f} MB")
 - 
 - # SIGUSR2 handler: stop tracemalloc
 - def stop_tracemalloc(signum, frame):
 -     if tracemalloc.is_tracing():
 -         logging.info("stop tracemalloc")
 -         tracemalloc.stop()
 -     else:
 -         logging.info("tracemalloc not running")
 - 
 - class TaskCanceledException(Exception):
 -     def __init__(self, msg):
 -         self.msg = msg
 - 
 - 
 - def set_progress(task_id, from_page=0, to_page=-1, prog=None, msg="Processing..."):
 -     try:
 -         if prog is not None and prog < 0:
 -             msg = "[ERROR]" + msg
 -         cancel = TaskService.do_cancel(task_id)
 - 
 -         if cancel:
 -             msg += " [Canceled]"
 -             prog = -1
 - 
 -         if to_page > 0:
 -             if msg:
 -                 if from_page < to_page:
 -                     msg = f"Page({from_page + 1}~{to_page + 1}): " + msg
 -         if msg:
 -             msg = datetime.now().strftime("%H:%M:%S") + " " + msg
 -         d = {"progress_msg": msg}
 -         if prog is not None:
 -             d["progress"] = prog
 - 
 -         TaskService.update_progress(task_id, d)
 - 
 -         close_connection()
 -         if cancel:
 -             raise TaskCanceledException(msg)
 -         logging.info(f"set_progress({task_id}), progress: {prog}, progress_msg: {msg}")
 -     except DoesNotExist:
 -         logging.warning(f"set_progress({task_id}) got exception DoesNotExist")
 -     except Exception:
 -         logging.exception(f"set_progress({task_id}), progress: {prog}, progress_msg: {msg}, got exception")
 - 
 - async def collect():
 -     global CONSUMER_NAME, DONE_TASKS, FAILED_TASKS
 -     global UNACKED_ITERATOR
 -     svr_queue_names = get_svr_queue_names()
 -     try:
 -         if not UNACKED_ITERATOR:
 -             UNACKED_ITERATOR = REDIS_CONN.get_unacked_iterator(svr_queue_names, SVR_CONSUMER_GROUP_NAME, CONSUMER_NAME)
 -         try:
 -             redis_msg = next(UNACKED_ITERATOR)
 -         except StopIteration:
 -             for svr_queue_name in svr_queue_names:
 -                 redis_msg = REDIS_CONN.queue_consumer(svr_queue_name, SVR_CONSUMER_GROUP_NAME, CONSUMER_NAME)
 -                 if redis_msg:
 -                     break
 -     except Exception:
 -         logging.exception("collect got exception")
 -         return None, None
 - 
 -     if not redis_msg:
 -         return None, None
 -     msg = redis_msg.get_message()
 -     if not msg:
 -         logging.error(f"collect got empty message of {redis_msg.get_msg_id()}")
 -         redis_msg.ack()
 -         return None, None
 - 
 -     canceled = False
 -     task = TaskService.get_task(msg["id"])
 -     if task:
 -         _, doc = DocumentService.get_by_id(task["doc_id"])
 -         canceled = doc.run == TaskStatus.CANCEL.value or doc.progress < 0
 -     if not task or canceled:
 -         state = "is unknown" if not task else "has been cancelled"
 -         FAILED_TASKS += 1
 -         logging.warning(f"collect task {msg['id']} {state}")
 -         redis_msg.ack()
 -         return None, None
 -     task["task_type"] = msg.get("task_type", "")
 -     return redis_msg, task
 - 
 - 
 - async def get_storage_binary(bucket, name):
 -     return await trio.to_thread.run_sync(lambda: STORAGE_IMPL.get(bucket, name))
 - 
 - 
 - async def build_chunks(task, progress_callback):
 -     if task["size"] > DOC_MAXIMUM_SIZE:
 -         set_progress(task["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
 -                                               (int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
 -         return []
 - 
 -     chunker = FACTORY[task["parser_id"].lower()]
 -     try:
 -         st = timer()
 -         bucket, name = File2DocumentService.get_storage_address(doc_id=task["doc_id"])
 -         binary = await get_storage_binary(bucket, name)
 -         logging.info("From minio({}) {}/{}".format(timer() - st, task["location"], task["name"]))
 -     except TimeoutError:
 -         progress_callback(-1, "Internal server error: Fetch file from minio timeout. Could you try it again.")
 -         logging.exception(
 -             "Minio {}/{} got timeout: Fetch file from minio timeout.".format(task["location"], task["name"]))
 -         raise
 -     except Exception as e:
 -         if re.search("(No such file|not found)", str(e)):
 -             progress_callback(-1, "Can not find file <%s> from minio. Could you try it again?" % task["name"])
 -         else:
 -             progress_callback(-1, "Get file from minio: %s" % str(e).replace("'", ""))
 -         logging.exception("Chunking {}/{} got exception".format(task["location"], task["name"]))
 -         raise
 - 
 -     try:
 -         async with chunk_limiter:
 -             cks = await trio.to_thread.run_sync(lambda: chunker.chunk(task["name"], binary=binary, from_page=task["from_page"],
 -                                 to_page=task["to_page"], lang=task["language"], callback=progress_callback,
 -                                 kb_id=task["kb_id"], parser_config=task["parser_config"], tenant_id=task["tenant_id"]))
 -         logging.info("Chunking({}) {}/{} done".format(timer() - st, task["location"], task["name"]))
 -     except TaskCanceledException:
 -         raise
 -     except Exception as e:
 -         progress_callback(-1, "Internal server error while chunking: %s" % str(e).replace("'", ""))
 -         logging.exception("Chunking {}/{} got exception".format(task["location"], task["name"]))
 -         raise
 - 
 -     docs = []
 -     doc = {
 -         "doc_id": task["doc_id"],
 -         "kb_id": str(task["kb_id"])
 -     }
 -     if task["pagerank"]:
 -         doc[PAGERANK_FLD] = int(task["pagerank"])
 -     st = timer()
 - 
 -     async def upload_to_minio(document, chunk):
 -         try:
 -             async with minio_limiter:
 -                 d = copy.deepcopy(document)
 -                 d.update(chunk)
 -                 d["id"] = xxhash.xxh64((chunk["content_with_weight"] + str(d["doc_id"])).encode("utf-8")).hexdigest()
 -                 d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
 -                 d["create_timestamp_flt"] = datetime.now().timestamp()
 -                 if not d.get("image"):
 -                     _ = d.pop("image", None)
 -                     d["img_id"] = ""
 -                     docs.append(d)
 -                     return
 - 
 -                 output_buffer = BytesIO()
 -                 if isinstance(d["image"], bytes):
 -                     output_buffer = BytesIO(d["image"])
 -                 else:
 -                     d["image"].save(output_buffer, format='JPEG')
 -                 await trio.to_thread.run_sync(lambda: STORAGE_IMPL.put(task["kb_id"], d["id"], output_buffer.getvalue()))
 - 
 -                 d["img_id"] = "{}-{}".format(task["kb_id"], d["id"])
 -                 del d["image"]
 -                 docs.append(d)
 -         except Exception:
 -             logging.exception(
 -                 "Saving image of chunk {}/{}/{} got exception".format(task["location"], task["name"], d["id"]))
 -             raise
 - 
 -     async with trio.open_nursery() as nursery:
 -         for ck in cks:
 -             nursery.start_soon(upload_to_minio, doc, ck)
 - 
 -     el = timer() - st
 -     logging.info("MINIO PUT({}) cost {:.3f} s".format(task["name"], el))
 - 
 -     if task["parser_config"].get("auto_keywords", 0):
 -         st = timer()
 -         progress_callback(msg="Start to generate keywords for every chunk ...")
 -         chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"])
 - 
 -         async def doc_keyword_extraction(chat_mdl, d, topn):
 -             cached = get_llm_cache(chat_mdl.llm_name, d["content_with_weight"], "keywords", {"topn": topn})
 -             if not cached:
 -                 async with chat_limiter:
 -                     cached = await trio.to_thread.run_sync(lambda: keyword_extraction(chat_mdl, d["content_with_weight"], topn))
 -                 set_llm_cache(chat_mdl.llm_name, d["content_with_weight"], cached, "keywords", {"topn": topn})
 -             if cached:
 -                 d["important_kwd"] = cached.split(",")
 -                 d["important_tks"] = rag_tokenizer.tokenize(" ".join(d["important_kwd"]))
 -             return
 -         async with trio.open_nursery() as nursery:
 -             for d in docs:
 -                 nursery.start_soon(doc_keyword_extraction, chat_mdl, d, task["parser_config"]["auto_keywords"])
 -         progress_callback(msg="Keywords generation {} chunks completed in {:.2f}s".format(len(docs), timer() - st))
 - 
 -     if task["parser_config"].get("auto_questions", 0):
 -         st = timer()
 -         progress_callback(msg="Start to generate questions for every chunk ...")
 -         chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"])
 - 
 -         async def doc_question_proposal(chat_mdl, d, topn):
 -             cached = get_llm_cache(chat_mdl.llm_name, d["content_with_weight"], "question", {"topn": topn})
 -             if not cached:
 -                 async with chat_limiter:
 -                     cached = await trio.to_thread.run_sync(lambda: question_proposal(chat_mdl, d["content_with_weight"], topn))
 -                 set_llm_cache(chat_mdl.llm_name, d["content_with_weight"], cached, "question", {"topn": topn})
 -             if cached:
 -                 d["question_kwd"] = cached.split("\n")
 -                 d["question_tks"] = rag_tokenizer.tokenize("\n".join(d["question_kwd"]))
 -         async with trio.open_nursery() as nursery:
 -             for d in docs:
 -                 nursery.start_soon(doc_question_proposal, chat_mdl, d, task["parser_config"]["auto_questions"])
 -         progress_callback(msg="Question generation {} chunks completed in {:.2f}s".format(len(docs), timer() - st))
 - 
 -     if task["kb_parser_config"].get("tag_kb_ids", []):
 -         progress_callback(msg="Start to tag for every chunk ...")
 -         kb_ids = task["kb_parser_config"]["tag_kb_ids"]
 -         tenant_id = task["tenant_id"]
 -         topn_tags = task["kb_parser_config"].get("topn_tags", 3)
 -         S = 1000
 -         st = timer()
 -         examples = []
 -         all_tags = get_tags_from_cache(kb_ids)
 -         if not all_tags:
 -             all_tags = settings.retrievaler.all_tags_in_portion(tenant_id, kb_ids, S)
 -             set_tags_to_cache(kb_ids, all_tags)
 -         else:
 -             all_tags = json.loads(all_tags)
 - 
 -         chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"])
 - 
 -         docs_to_tag = []
 -         for d in docs:
 -             if settings.retrievaler.tag_content(tenant_id, kb_ids, d, all_tags, topn_tags=topn_tags, S=S) and len(d[TAG_FLD]) > 0:
 -                 examples.append({"content": d["content_with_weight"], TAG_FLD: d[TAG_FLD]})
 -             else:
 -                 docs_to_tag.append(d)
 - 
 -         async def doc_content_tagging(chat_mdl, d, topn_tags):
 -             cached = get_llm_cache(chat_mdl.llm_name, d["content_with_weight"], all_tags, {"topn": topn_tags})
 -             if not cached:
 -                 picked_examples = random.choices(examples, k=2) if len(examples)>2 else examples
 -                 if not picked_examples:
 -                     picked_examples.append({"content": "This is an example", TAG_FLD: {'example': 1}})
 -                 async with chat_limiter:
 -                     cached = await trio.to_thread.run_sync(lambda: content_tagging(chat_mdl, d["content_with_weight"], all_tags, picked_examples, topn=topn_tags))
 -                 if cached:
 -                     cached = json.dumps(cached)
 -             if cached:
 -                 set_llm_cache(chat_mdl.llm_name, d["content_with_weight"], cached, all_tags, {"topn": topn_tags})
 -                 d[TAG_FLD] = json.loads(cached)
 -         async with trio.open_nursery() as nursery:
 -             for d in docs_to_tag:
 -                 nursery.start_soon(doc_content_tagging, chat_mdl, d, topn_tags)
 -         progress_callback(msg="Tagging {} chunks completed in {:.2f}s".format(len(docs), timer() - st))
 - 
 -     return docs
 - 
 - 
 - def init_kb(row, vector_size: int):
 -     idxnm = search.index_name(row["tenant_id"])
 -     return settings.docStoreConn.createIdx(idxnm, row.get("kb_id", ""), vector_size)
 - 
 - 
 - async def embedding(docs, mdl, parser_config=None, callback=None):
 -     if parser_config is None:
 -         parser_config = {}
 -     batch_size = 16
 -     tts, cnts = [], []
 -     for d in docs:
 -         tts.append(d.get("docnm_kwd", "Title"))
 -         c = "\n".join(d.get("question_kwd", []))
 -         if not c:
 -             c = d["content_with_weight"]
 -         c = re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", c)
 -         if not c:
 -             c = "None"
 -         cnts.append(c)
 - 
 -     tk_count = 0
 -     if len(tts) == len(cnts):
 -         vts, c = await trio.to_thread.run_sync(lambda: mdl.encode(tts[0: 1]))
 -         tts = np.concatenate([vts for _ in range(len(tts))], axis=0)
 -         tk_count += c
 - 
 -     cnts_ = np.array([])
 -     for i in range(0, len(cnts), batch_size):
 -         vts, c = await trio.to_thread.run_sync(lambda: mdl.encode([truncate(c, mdl.max_length-10) for c in cnts[i: i + batch_size]]))
 -         if len(cnts_) == 0:
 -             cnts_ = vts
 -         else:
 -             cnts_ = np.concatenate((cnts_, vts), axis=0)
 -         tk_count += c
 -         callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="")
 -     cnts = cnts_
 - 
 -     title_w = float(parser_config.get("filename_embd_weight", 0.1))
 -     vects = (title_w * tts + (1 - title_w) *
 -              cnts) if len(tts) == len(cnts) else cnts
 - 
 -     assert len(vects) == len(docs)
 -     vector_size = 0
 -     for i, d in enumerate(docs):
 -         v = vects[i].tolist()
 -         vector_size = len(v)
 -         d["q_%d_vec" % len(v)] = v
 -     return tk_count, vector_size
 - 
 - 
 - async def run_raptor(row, chat_mdl, embd_mdl, vector_size, callback=None):
 -     chunks = []
 -     vctr_nm = "q_%d_vec"%vector_size
 -     for d in settings.retrievaler.chunk_list(row["doc_id"], row["tenant_id"], [str(row["kb_id"])],
 -                                              fields=["content_with_weight", vctr_nm]):
 -         chunks.append((d["content_with_weight"], np.array(d[vctr_nm])))
 - 
 -     raptor = Raptor(
 -         row["parser_config"]["raptor"].get("max_cluster", 64),
 -         chat_mdl,
 -         embd_mdl,
 -         row["parser_config"]["raptor"]["prompt"],
 -         row["parser_config"]["raptor"]["max_token"],
 -         row["parser_config"]["raptor"]["threshold"]
 -     )
 -     original_length = len(chunks)
 -     chunks = await raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback)
 -     doc = {
 -         "doc_id": row["doc_id"],
 -         "kb_id": [str(row["kb_id"])],
 -         "docnm_kwd": row["name"],
 -         "title_tks": rag_tokenizer.tokenize(row["name"])
 -     }
 -     if row["pagerank"]:
 -         doc[PAGERANK_FLD] = int(row["pagerank"])
 -     res = []
 -     tk_count = 0
 -     for content, vctr in chunks[original_length:]:
 -         d = copy.deepcopy(doc)
 -         d["id"] = xxhash.xxh64((content + str(d["doc_id"])).encode("utf-8")).hexdigest()
 -         d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
 -         d["create_timestamp_flt"] = datetime.now().timestamp()
 -         d[vctr_nm] = vctr.tolist()
 -         d["content_with_weight"] = content
 -         d["content_ltks"] = rag_tokenizer.tokenize(content)
 -         d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
 -         res.append(d)
 -         tk_count += num_tokens_from_string(content)
 -     return res, tk_count
 - 
 - 
 - async def do_handle_task(task):
 -     task_id = task["id"]
 -     task_from_page = task["from_page"]
 -     task_to_page = task["to_page"]
 -     task_tenant_id = task["tenant_id"]
 -     task_embedding_id = task["embd_id"]
 -     task_language = task["language"]
 -     task_llm_id = task["llm_id"]
 -     task_dataset_id = task["kb_id"]
 -     task_doc_id = task["doc_id"]
 -     task_document_name = task["name"]
 -     task_parser_config = task["parser_config"]
 -     task_start_ts = timer()
 - 
 -     # prepare the progress callback function
 -     progress_callback = partial(set_progress, task_id, task_from_page, task_to_page)
 - 
 -     # FIXME: workaround, Infinity doesn't support table parsing method, this check is to notify user
 -     lower_case_doc_engine = settings.DOC_ENGINE.lower()
 -     if lower_case_doc_engine == 'infinity' and task['parser_id'].lower() == 'table':
 -         error_message = "Table parsing method is not supported by Infinity, please use other parsing methods or use Elasticsearch as the document engine."
 -         progress_callback(-1, msg=error_message)
 -         raise Exception(error_message)
 - 
 -     task_canceled = TaskService.do_cancel(task_id)
 -     if task_canceled:
 -         progress_callback(-1, msg="Task has been canceled.")
 -         return
 - 
 -     try:
 -         # bind embedding model
 -         embedding_model = LLMBundle(task_tenant_id, LLMType.EMBEDDING, llm_name=task_embedding_id, lang=task_language)
 -         vts, _ = embedding_model.encode(["ok"])
 -         vector_size = len(vts[0])
 -     except Exception as e:
 -         error_message = f'Fail to bind embedding model: {str(e)}'
 -         progress_callback(-1, msg=error_message)
 -         logging.exception(error_message)
 -         raise
 - 
 -     init_kb(task, vector_size)
 - 
 -     # Either using RAPTOR or Standard chunking methods
 -     if task.get("task_type", "") == "raptor":
 -         # bind LLM for raptor
 -         chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
 -         # run RAPTOR
 -         chunks, token_count = await run_raptor(task, chat_model, embedding_model, vector_size, progress_callback)
 -     # Either using graphrag or Standard chunking methods
 -     elif task.get("task_type", "") == "graphrag":
 -         global task_limiter
 -         task_limiter = trio.CapacityLimiter(2)
 -         if not task_parser_config.get("graphrag", {}).get("use_graphrag", False):
 -             return
 -         graphrag_conf = task["kb_parser_config"].get("graphrag", {})
 -         start_ts = timer()
 -         chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
 -         with_resolution = graphrag_conf.get("resolution", False)
 -         with_community = graphrag_conf.get("community", False)
 -         await run_graphrag(task, task_language, with_resolution, with_community, chat_model, embedding_model, progress_callback)
 -         progress_callback(prog=1.0, msg="Knowledge Graph done ({:.2f}s)".format(timer() - start_ts))
 -         return
 -     else:
 -         # Standard chunking methods
 -         start_ts = timer()
 -         chunks = await build_chunks(task, progress_callback)
 -         logging.info("Build document {}: {:.2f}s".format(task_document_name, timer() - start_ts))
 -         if chunks is None:
 -             return
 -         if not chunks:
 -             progress_callback(1., msg=f"No chunk built from {task_document_name}")
 -             return
 -         # TODO: exception handler
 -         ## set_progress(task["did"], -1, "ERROR: ")
 -         progress_callback(msg="Generate {} chunks".format(len(chunks)))
 -         start_ts = timer()
 -         try:
 -             token_count, vector_size = await embedding(chunks, embedding_model, task_parser_config, progress_callback)
 -         except Exception as e:
 -             error_message = "Generate embedding error:{}".format(str(e))
 -             progress_callback(-1, error_message)
 -             logging.exception(error_message)
 -             token_count = 0
 -             raise
 -         progress_message = "Embedding chunks ({:.2f}s)".format(timer() - start_ts)
 -         logging.info(progress_message)
 -         progress_callback(msg=progress_message)
 - 
 -     chunk_count = len(set([chunk["id"] for chunk in chunks]))
 -     start_ts = timer()
 -     doc_store_result = ""
 -     es_bulk_size = 4
 -     for b in range(0, len(chunks), es_bulk_size):
 -         doc_store_result = await trio.to_thread.run_sync(lambda: settings.docStoreConn.insert(chunks[b:b + es_bulk_size], search.index_name(task_tenant_id), task_dataset_id))
 -         if b % 128 == 0:
 -             progress_callback(prog=0.8 + 0.1 * (b + 1) / len(chunks), msg="")
 -         if doc_store_result:
 -             error_message = f"Insert chunk error: {doc_store_result}, please check log file and Elasticsearch/Infinity status!"
 -             progress_callback(-1, msg=error_message)
 -             raise Exception(error_message)
 -         chunk_ids = [chunk["id"] for chunk in chunks[:b + es_bulk_size]]
 -         chunk_ids_str = " ".join(chunk_ids)
 -         try:
 -             TaskService.update_chunk_ids(task["id"], chunk_ids_str)
 -         except DoesNotExist:
 -             logging.warning(f"do_handle_task update_chunk_ids failed since task {task['id']} is unknown.")
 -             doc_store_result = await trio.to_thread.run_sync(lambda: settings.docStoreConn.delete({"id": chunk_ids}, search.index_name(task_tenant_id), task_dataset_id))
 -             return
 -     logging.info("Indexing doc({}), page({}-{}), chunks({}), elapsed: {:.2f}".format(task_document_name, task_from_page,
 -                                                                                      task_to_page, len(chunks),
 -                                                                                      timer() - start_ts))
 - 
 -     DocumentService.increment_chunk_num(task_doc_id, task_dataset_id, token_count, chunk_count, 0)
 - 
 -     time_cost = timer() - start_ts
 -     task_time_cost = timer() - task_start_ts
 -     progress_callback(prog=1.0, msg="Indexing done ({:.2f}s). Task done ({:.2f}s)".format(time_cost, task_time_cost))
 -     logging.info(
 -         "Chunk doc({}), page({}-{}), chunks({}), token({}), elapsed:{:.2f}".format(task_document_name, task_from_page,
 -                                                                                    task_to_page, len(chunks),
 -                                                                                    token_count, task_time_cost))
 - 
 - 
 - async def handle_task():
 -     global DONE_TASKS, FAILED_TASKS
 -     redis_msg, task = await collect()
 -     if not task:
 -         await trio.sleep(5)
 -         return
 -     try:
 -         logging.info(f"handle_task begin for task {json.dumps(task)}")
 -         CURRENT_TASKS[task["id"]] = copy.deepcopy(task)
 -         await do_handle_task(task)
 -         DONE_TASKS += 1
 -         CURRENT_TASKS.pop(task["id"], None)
 -         logging.info(f"handle_task done for task {json.dumps(task)}")
 -     except Exception as e:
 -         FAILED_TASKS += 1
 -         CURRENT_TASKS.pop(task["id"], None)
 -         try:
 -             err_msg = str(e)
 -             while isinstance(e, exceptiongroup.ExceptionGroup):
 -                 e = e.exceptions[0]
 -                 err_msg += ' -- ' + str(e)
 -             set_progress(task["id"], prog=-1, msg=f"[Exception]: {err_msg}")
 -         except Exception:
 -             pass
 -         logging.exception(f"handle_task got exception for task {json.dumps(task)}")
 -     redis_msg.ack()
 - 
 - 
 - async def report_status():
 -     global CONSUMER_NAME, BOOT_AT, PENDING_TASKS, LAG_TASKS, DONE_TASKS, FAILED_TASKS
 -     REDIS_CONN.sadd("TASKEXE", CONSUMER_NAME)
 -     redis_lock = RedisDistributedLock("clean_task_executor", lock_value=CONSUMER_NAME, timeout=60)
 -     while True:
 -         try:
 -             now = datetime.now()
 -             group_info = REDIS_CONN.queue_info(get_svr_queue_name(0), SVR_CONSUMER_GROUP_NAME)
 -             if group_info is not None:
 -                 PENDING_TASKS = int(group_info.get("pending", 0))
 -                 LAG_TASKS = int(group_info.get("lag", 0))
 - 
 -             current = copy.deepcopy(CURRENT_TASKS)
 -             heartbeat = json.dumps({
 -                 "name": CONSUMER_NAME,
 -                 "now": now.astimezone().isoformat(timespec="milliseconds"),
 -                 "boot_at": BOOT_AT,
 -                 "pending": PENDING_TASKS,
 -                 "lag": LAG_TASKS,
 -                 "done": DONE_TASKS,
 -                 "failed": FAILED_TASKS,
 -                 "current": current,
 -             })
 -             REDIS_CONN.zadd(CONSUMER_NAME, heartbeat, now.timestamp())
 -             logging.info(f"{CONSUMER_NAME} reported heartbeat: {heartbeat}")
 - 
 -             expired = REDIS_CONN.zcount(CONSUMER_NAME, 0, now.timestamp() - 60 * 30)
 -             if expired > 0:
 -                 REDIS_CONN.zpopmin(CONSUMER_NAME, expired)
 - 
 -             # clean task executor
 -             if redis_lock.acquire():
 -                 task_executors = REDIS_CONN.smembers("TASKEXE")
 -                 for consumer_name in task_executors:
 -                     if consumer_name == CONSUMER_NAME:
 -                         continue
 -                     expired = REDIS_CONN.zcount(
 -                         consumer_name, now.timestamp() - WORKER_HEARTBEAT_TIMEOUT, now.timestamp() + 10
 -                     )
 -                     if expired == 0:
 -                         logging.info(f"{consumer_name} expired, removed")
 -                         REDIS_CONN.srem("TASKEXE", consumer_name)
 -                         REDIS_CONN.delete(consumer_name)
 -         except Exception:
 -             logging.exception("report_status got exception")
 -         finally:
 -             redis_lock.release()
 -         await trio.sleep(30)
 - 
 - 
 - def recover_pending_tasks():
 -     redis_lock = RedisDistributedLock("recover_pending_tasks", lock_value=CONSUMER_NAME, timeout=60)
 -     svr_queue_names = get_svr_queue_names()
 -     while not stop_event.is_set():
 -         try:
 -             if redis_lock.acquire():
 -                 for queue_name in svr_queue_names:
 -                     msgs = REDIS_CONN.get_pending_msg(queue=queue_name, group_name=SVR_CONSUMER_GROUP_NAME)
 -                     msgs = [msg for msg in msgs if msg['consumer'] != CONSUMER_NAME]
 -                     if len(msgs) == 0:
 -                         continue
 - 
 -                     task_executors = REDIS_CONN.smembers("TASKEXE")
 -                     task_executor_set = {t for t in task_executors}
 -                     msgs = [msg for msg in msgs if msg['consumer'] not in task_executor_set]
 -                     for msg in msgs:
 -                         logging.info(
 -                             f"Recover pending task: {msg['message_id']}, consumer: {msg['consumer']}, "
 -                             f"time since delivered: {msg['time_since_delivered'] / 1000} s"
 -                         )
 -                         REDIS_CONN.requeue_msg(queue_name, SVR_CONSUMER_GROUP_NAME, msg['message_id'])
 -         except Exception:
 -             logging.warning("recover_pending_tasks got exception")
 -         finally:
 -             redis_lock.release()
 -             stop_event.wait(60)
 -         
 - async def task_manager():
 -     global task_limiter
 -     async with task_limiter:
 -         await handle_task()
 - 
 - 
 - async def main():
 -     logging.info(r"""
 -   ______           __      ______                     __
 -  /_  __/___ ______/ /__   / ____/  _____  _______  __/ /_____  _____
 -   / / / __ `/ ___/ //_/  / __/ | |/_/ _ \/ ___/ / / / __/ __ \/ ___/
 -  / / / /_/ (__  ) ,<    / /____>  </  __/ /__/ /_/ / /_/ /_/ / /
 - /_/  \__,_/____/_/|_|  /_____/_/|_|\___/\___/\__,_/\__/\____/_/
 -     """)
 -     logging.info(f'TaskExecutor: RAGFlow version: {get_ragflow_version()}')
 -     settings.init_settings()
 -     print_rag_settings()
 -     if sys.platform != "win32":
 -         signal.signal(signal.SIGUSR1, start_tracemalloc_and_snapshot)
 -         signal.signal(signal.SIGUSR2, stop_tracemalloc)
 -     TRACE_MALLOC_ENABLED = int(os.environ.get('TRACE_MALLOC_ENABLED', "0"))
 -     if TRACE_MALLOC_ENABLED:
 -         start_tracemalloc_and_snapshot(None, None)
 - 
 -     signal.signal(signal.SIGINT, signal_handler)
 -     signal.signal(signal.SIGTERM, signal_handler)
 - 
 -     threading.Thread(name="RecoverPendingTask", target=recover_pending_tasks).start()
 - 
 -     async with trio.open_nursery() as nursery:
 -         nursery.start_soon(report_status)
 -         while not stop_event.is_set():
 -             nursery.start_soon(task_manager)
 -             await trio.sleep(0.1)
 -     logging.error("BUG!!! You should not reach here!!!")
 - 
 - if __name__ == "__main__":
 -     faulthandler.enable()
 -     initRootLogger(CONSUMER_NAME)
 -     trio.run(main)
 
 
  |