| 
                        1234567891011121314151617181920212223242526272829303132333435363738394041424344 | 
                        - #
 - #  Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - 
 - import re
 - 
 - from api.db import LLMType
 - from rag.nlp import rag_tokenizer
 - from api.db.services.llm_service import LLMBundle
 - from rag.nlp import tokenize
 - 
 - 
 - def chunk(filename, binary, tenant_id, lang, callback=None, **kwargs):
 -     doc = {
 -         "docnm_kwd": filename,
 -         "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))
 -     }
 -     doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
 - 
 -     # is it English
 -     eng = lang.lower() == "english"  # is_english(sections)
 -     try:
 -         callback(0.1, "USE Sequence2Txt LLM to transcription the audio")
 -         seq2txt_mdl = LLMBundle(tenant_id, LLMType.SPEECH2TEXT, lang=lang)
 -         ans = seq2txt_mdl.transcription(binary)
 -         callback(0.8, "Sequence2Txt LLM respond: %s ..." % ans[:32])
 -         tokenize(doc, ans, eng)
 -         return [doc]
 -     except Exception as e:
 -         callback(prog=-1, msg=str(e))
 - 
 -     return []
 
 
  |