- # Copyright (c) 2024 Microsoft Corporation.
 - # Licensed under the MIT License
 - """
 - Reference:
 -  - [graphrag](https://github.com/microsoft/graphrag)
 - """
 - 
 - import re
 - from typing import Any
 - from dataclasses import dataclass
 - import tiktoken
 - import trio
 - 
 - from graphrag.general.extractor import Extractor, ENTITY_EXTRACTION_MAX_GLEANINGS
 - from graphrag.general.graph_prompt import GRAPH_EXTRACTION_PROMPT, CONTINUE_PROMPT, LOOP_PROMPT
 - from graphrag.utils import ErrorHandlerFn, perform_variable_replacements, chat_limiter, split_string_by_multi_markers
 - from rag.llm.chat_model import Base as CompletionLLM
 - import networkx as nx
 - from rag.utils import num_tokens_from_string
 - 
 - DEFAULT_TUPLE_DELIMITER = "<|>"
 - DEFAULT_RECORD_DELIMITER = "##"
 - DEFAULT_COMPLETION_DELIMITER = "<|COMPLETE|>"
 - 
 - 
 - @dataclass
 - class GraphExtractionResult:
 -     """Unipartite graph extraction result class definition."""
 - 
 -     output: nx.Graph
 -     source_docs: dict[Any, Any]
 - 
 - 
 - class GraphExtractor(Extractor):
 -     """Unipartite graph extractor class definition."""
 - 
 -     _join_descriptions: bool
 -     _tuple_delimiter_key: str
 -     _record_delimiter_key: str
 -     _entity_types_key: str
 -     _input_text_key: str
 -     _completion_delimiter_key: str
 -     _entity_name_key: str
 -     _input_descriptions_key: str
 -     _extraction_prompt: str
 -     _summarization_prompt: str
 -     _loop_args: dict[str, Any]
 -     _max_gleanings: int
 -     _on_error: ErrorHandlerFn
 - 
 -     def __init__(
 -         self,
 -         llm_invoker: CompletionLLM,
 -         language: str | None = "English",
 -         entity_types: list[str] | None = None,
 -         tuple_delimiter_key: str | None = None,
 -         record_delimiter_key: str | None = None,
 -         input_text_key: str | None = None,
 -         entity_types_key: str | None = None,
 -         completion_delimiter_key: str | None = None,
 -         join_descriptions=True,
 -         max_gleanings: int | None = None,
 -         on_error: ErrorHandlerFn | None = None,
 -     ):
 -         super().__init__(llm_invoker, language, entity_types)
 -         """Init method definition."""
 -         # TODO: streamline construction
 -         self._llm = llm_invoker
 -         self._join_descriptions = join_descriptions
 -         self._input_text_key = input_text_key or "input_text"
 -         self._tuple_delimiter_key = tuple_delimiter_key or "tuple_delimiter"
 -         self._record_delimiter_key = record_delimiter_key or "record_delimiter"
 -         self._completion_delimiter_key = (
 -             completion_delimiter_key or "completion_delimiter"
 -         )
 -         self._entity_types_key = entity_types_key or "entity_types"
 -         self._extraction_prompt = GRAPH_EXTRACTION_PROMPT
 -         self._max_gleanings = (
 -             max_gleanings
 -             if max_gleanings is not None
 -             else ENTITY_EXTRACTION_MAX_GLEANINGS
 -         )
 -         self._on_error = on_error or (lambda _e, _s, _d: None)
 -         self.prompt_token_count = num_tokens_from_string(self._extraction_prompt)
 - 
 -         # Construct the looping arguments
 -         encoding = tiktoken.get_encoding("cl100k_base")
 -         yes = encoding.encode("YES")
 -         no = encoding.encode("NO")
 -         self._loop_args = {"logit_bias": {yes[0]: 100, no[0]: 100}, "max_tokens": 1}
 - 
 -         # Wire defaults into the prompt variables
 -         self._prompt_variables = {
 -             self._tuple_delimiter_key: DEFAULT_TUPLE_DELIMITER,
 -             self._record_delimiter_key: DEFAULT_RECORD_DELIMITER,
 -             self._completion_delimiter_key: DEFAULT_COMPLETION_DELIMITER,
 -             self._entity_types_key: ",".join(entity_types),
 -         }
 - 
 -     async def _process_single_content(self, chunk_key_dp: tuple[str, str], chunk_seq: int, num_chunks: int, out_results):
 -         token_count = 0
 -         chunk_key = chunk_key_dp[0]
 -         content = chunk_key_dp[1]
 -         variables = {
 -             **self._prompt_variables,
 -             self._input_text_key: content,
 -         }
 -         hint_prompt = perform_variable_replacements(self._extraction_prompt, variables=variables)
 -         async with chat_limiter:
 -             response = await trio.to_thread.run_sync(lambda: self._chat(hint_prompt, [{"role": "user", "content": "Output:"}], {}))
 -         token_count += num_tokens_from_string(hint_prompt + response)
 - 
 -         results = response or ""
 -         history = [{"role": "system", "content": hint_prompt}, {"role": "user", "content": response}]
 - 
 -         # Repeat to ensure we maximize entity count
 -         for i in range(self._max_gleanings):
 -             history.append({"role": "user", "content": CONTINUE_PROMPT})
 -             async with chat_limiter:
 -                 response = await trio.to_thread.run_sync(lambda: self._chat("", history, {}))
 -             token_count += num_tokens_from_string("\n".join([m["content"] for m in history]) + response)
 -             results += response or ""
 - 
 -             # if this is the final glean, don't bother updating the continuation flag
 -             if i >= self._max_gleanings - 1:
 -                 break
 -             history.append({"role": "assistant", "content": response})
 -             history.append({"role": "user", "content": LOOP_PROMPT})
 -             async with chat_limiter:
 -                 continuation = await trio.to_thread.run_sync(lambda: self._chat("", history))
 -             token_count += num_tokens_from_string("\n".join([m["content"] for m in history]) + response)
 -             if continuation != "Y":
 -                 break
 -             history.append({"role": "assistant", "content": "Y"})
 - 
 -         records = split_string_by_multi_markers(
 -             results,
 -             [self._prompt_variables[self._record_delimiter_key], self._prompt_variables[self._completion_delimiter_key]],
 -         )
 -         rcds = []
 -         for record in records:
 -             record = re.search(r"\((.*)\)", record)
 -             if record is None:
 -                 continue
 -             rcds.append(record.group(1))
 -         records = rcds
 -         maybe_nodes, maybe_edges = self._entities_and_relations(chunk_key, records, self._prompt_variables[self._tuple_delimiter_key])
 -         out_results.append((maybe_nodes, maybe_edges, token_count))
 -         if self.callback:
 -             self.callback(0.5+0.1*len(out_results)/num_chunks, msg = f"Entities extraction of chunk {chunk_seq} {len(out_results)}/{num_chunks} done, {len(maybe_nodes)} nodes, {len(maybe_edges)} edges, {token_count} tokens.")
 
 
  |