| 
                        123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370 | 
                        - #
 - #  Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - 
 - import copy
 - import re
 - import numpy as np
 - import cv2
 - from shapely.geometry import Polygon
 - import pyclipper
 - 
 - 
 - def build_post_process(config, global_config=None):
 -     support_dict = {'DBPostProcess': DBPostProcess, 'CTCLabelDecode': CTCLabelDecode}
 - 
 -     config = copy.deepcopy(config)
 -     module_name = config.pop('name')
 -     if module_name == "None":
 -         return
 -     if global_config is not None:
 -         config.update(global_config)
 -     module_class = support_dict.get(module_name)
 -     if module_class is None:
 -         raise ValueError(
 -             'post process only support {}'.format(list(support_dict)))
 -     return module_class(**config)
 - 
 - 
 - class DBPostProcess(object):
 -     """
 -     The post process for Differentiable Binarization (DB).
 -     """
 - 
 -     def __init__(self,
 -                  thresh=0.3,
 -                  box_thresh=0.7,
 -                  max_candidates=1000,
 -                  unclip_ratio=2.0,
 -                  use_dilation=False,
 -                  score_mode="fast",
 -                  box_type='quad',
 -                  **kwargs):
 -         self.thresh = thresh
 -         self.box_thresh = box_thresh
 -         self.max_candidates = max_candidates
 -         self.unclip_ratio = unclip_ratio
 -         self.min_size = 3
 -         self.score_mode = score_mode
 -         self.box_type = box_type
 -         assert score_mode in [
 -             "slow", "fast"
 -         ], "Score mode must be in [slow, fast] but got: {}".format(score_mode)
 - 
 -         self.dilation_kernel = None if not use_dilation else np.array(
 -             [[1, 1], [1, 1]])
 - 
 -     def polygons_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
 -         '''
 -         _bitmap: single map with shape (1, H, W),
 -             whose values are binarized as {0, 1}
 -         '''
 - 
 -         bitmap = _bitmap
 -         height, width = bitmap.shape
 - 
 -         boxes = []
 -         scores = []
 - 
 -         contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8),
 -                                        cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
 - 
 -         for contour in contours[:self.max_candidates]:
 -             epsilon = 0.002 * cv2.arcLength(contour, True)
 -             approx = cv2.approxPolyDP(contour, epsilon, True)
 -             points = approx.reshape((-1, 2))
 -             if points.shape[0] < 4:
 -                 continue
 - 
 -             score = self.box_score_fast(pred, points.reshape(-1, 2))
 -             if self.box_thresh > score:
 -                 continue
 - 
 -             if points.shape[0] > 2:
 -                 box = self.unclip(points, self.unclip_ratio)
 -                 if len(box) > 1:
 -                     continue
 -             else:
 -                 continue
 -             box = box.reshape(-1, 2)
 - 
 -             _, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))
 -             if sside < self.min_size + 2:
 -                 continue
 - 
 -             box = np.array(box)
 -             box[:, 0] = np.clip(
 -                 np.round(box[:, 0] / width * dest_width), 0, dest_width)
 -             box[:, 1] = np.clip(
 -                 np.round(box[:, 1] / height * dest_height), 0, dest_height)
 -             boxes.append(box.tolist())
 -             scores.append(score)
 -         return boxes, scores
 - 
 -     def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
 -         '''
 -         _bitmap: single map with shape (1, H, W),
 -                 whose values are binarized as {0, 1}
 -         '''
 - 
 -         bitmap = _bitmap
 -         height, width = bitmap.shape
 - 
 -         outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
 -                                 cv2.CHAIN_APPROX_SIMPLE)
 -         if len(outs) == 3:
 -             _img, contours, _ = outs[0], outs[1], outs[2]
 -         elif len(outs) == 2:
 -             contours, _ = outs[0], outs[1]
 - 
 -         num_contours = min(len(contours), self.max_candidates)
 - 
 -         boxes = []
 -         scores = []
 -         for index in range(num_contours):
 -             contour = contours[index]
 -             points, sside = self.get_mini_boxes(contour)
 -             if sside < self.min_size:
 -                 continue
 -             points = np.array(points)
 -             if self.score_mode == "fast":
 -                 score = self.box_score_fast(pred, points.reshape(-1, 2))
 -             else:
 -                 score = self.box_score_slow(pred, contour)
 -             if self.box_thresh > score:
 -                 continue
 - 
 -             box = self.unclip(points, self.unclip_ratio).reshape(-1, 1, 2)
 -             box, sside = self.get_mini_boxes(box)
 -             if sside < self.min_size + 2:
 -                 continue
 -             box = np.array(box)
 - 
 -             box[:, 0] = np.clip(
 -                 np.round(box[:, 0] / width * dest_width), 0, dest_width)
 -             box[:, 1] = np.clip(
 -                 np.round(box[:, 1] / height * dest_height), 0, dest_height)
 -             boxes.append(box.astype("int32"))
 -             scores.append(score)
 -         return np.array(boxes, dtype="int32"), scores
 - 
 -     def unclip(self, box, unclip_ratio):
 -         poly = Polygon(box)
 -         distance = poly.area * unclip_ratio / poly.length
 -         offset = pyclipper.PyclipperOffset()
 -         offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
 -         expanded = np.array(offset.Execute(distance))
 -         return expanded
 - 
 -     def get_mini_boxes(self, contour):
 -         bounding_box = cv2.minAreaRect(contour)
 -         points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
 - 
 -         index_1, index_2, index_3, index_4 = 0, 1, 2, 3
 -         if points[1][1] > points[0][1]:
 -             index_1 = 0
 -             index_4 = 1
 -         else:
 -             index_1 = 1
 -             index_4 = 0
 -         if points[3][1] > points[2][1]:
 -             index_2 = 2
 -             index_3 = 3
 -         else:
 -             index_2 = 3
 -             index_3 = 2
 - 
 -         box = [
 -             points[index_1], points[index_2], points[index_3], points[index_4]
 -         ]
 -         return box, min(bounding_box[1])
 - 
 -     def box_score_fast(self, bitmap, _box):
 -         '''
 -         box_score_fast: use bbox mean score as the mean score
 -         '''
 -         h, w = bitmap.shape[:2]
 -         box = _box.copy()
 -         xmin = np.clip(np.floor(box[:, 0].min()).astype("int32"), 0, w - 1)
 -         xmax = np.clip(np.ceil(box[:, 0].max()).astype("int32"), 0, w - 1)
 -         ymin = np.clip(np.floor(box[:, 1].min()).astype("int32"), 0, h - 1)
 -         ymax = np.clip(np.ceil(box[:, 1].max()).astype("int32"), 0, h - 1)
 - 
 -         mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
 -         box[:, 0] = box[:, 0] - xmin
 -         box[:, 1] = box[:, 1] - ymin
 -         cv2.fillPoly(mask, box.reshape(1, -1, 2).astype("int32"), 1)
 -         return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
 - 
 -     def box_score_slow(self, bitmap, contour):
 -         '''
 -         box_score_slow: use polyon mean score as the mean score
 -         '''
 -         h, w = bitmap.shape[:2]
 -         contour = contour.copy()
 -         contour = np.reshape(contour, (-1, 2))
 - 
 -         xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
 -         xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
 -         ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
 -         ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)
 - 
 -         mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
 - 
 -         contour[:, 0] = contour[:, 0] - xmin
 -         contour[:, 1] = contour[:, 1] - ymin
 - 
 -         cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype("int32"), 1)
 -         return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
 - 
 -     def __call__(self, outs_dict, shape_list):
 -         pred = outs_dict['maps']
 -         if not isinstance(pred, np.ndarray):
 -             pred = pred.numpy()
 -         pred = pred[:, 0, :, :]
 -         segmentation = pred > self.thresh
 - 
 -         boxes_batch = []
 -         for batch_index in range(pred.shape[0]):
 -             src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
 -             if self.dilation_kernel is not None:
 -                 mask = cv2.dilate(
 -                     np.array(segmentation[batch_index]).astype(np.uint8),
 -                     self.dilation_kernel)
 -             else:
 -                 mask = segmentation[batch_index]
 -             if self.box_type == 'poly':
 -                 boxes, scores = self.polygons_from_bitmap(pred[batch_index],
 -                                                           mask, src_w, src_h)
 -             elif self.box_type == 'quad':
 -                 boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
 -                                                        src_w, src_h)
 -             else:
 -                 raise ValueError(
 -                     "box_type can only be one of ['quad', 'poly']")
 - 
 -             boxes_batch.append({'points': boxes})
 -         return boxes_batch
 - 
 - 
 - class BaseRecLabelDecode(object):
 -     """ Convert between text-label and text-index """
 - 
 -     def __init__(self, character_dict_path=None, use_space_char=False):
 -         self.beg_str = "sos"
 -         self.end_str = "eos"
 -         self.reverse = False
 -         self.character_str = []
 - 
 -         if character_dict_path is None:
 -             self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
 -             dict_character = list(self.character_str)
 -         else:
 -             with open(character_dict_path, "rb") as fin:
 -                 lines = fin.readlines()
 -                 for line in lines:
 -                     line = line.decode('utf-8').strip("\n").strip("\r\n")
 -                     self.character_str.append(line)
 -             if use_space_char:
 -                 self.character_str.append(" ")
 -             dict_character = list(self.character_str)
 -             if 'arabic' in character_dict_path:
 -                 self.reverse = True
 - 
 -         dict_character = self.add_special_char(dict_character)
 -         self.dict = {}
 -         for i, char in enumerate(dict_character):
 -             self.dict[char] = i
 -         self.character = dict_character
 - 
 -     def pred_reverse(self, pred):
 -         pred_re = []
 -         c_current = ''
 -         for c in pred:
 -             if not bool(re.search('[a-zA-Z0-9 :*./%+-]', c)):
 -                 if c_current != '':
 -                     pred_re.append(c_current)
 -                 pred_re.append(c)
 -                 c_current = ''
 -             else:
 -                 c_current += c
 -         if c_current != '':
 -             pred_re.append(c_current)
 - 
 -         return ''.join(pred_re[::-1])
 - 
 -     def add_special_char(self, dict_character):
 -         return dict_character
 - 
 -     def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
 -         """ convert text-index into text-label. """
 -         result_list = []
 -         ignored_tokens = self.get_ignored_tokens()
 -         batch_size = len(text_index)
 -         for batch_idx in range(batch_size):
 -             selection = np.ones(len(text_index[batch_idx]), dtype=bool)
 -             if is_remove_duplicate:
 -                 selection[1:] = text_index[batch_idx][1:] != text_index[
 -                     batch_idx][:-1]
 -             for ignored_token in ignored_tokens:
 -                 selection &= text_index[batch_idx] != ignored_token
 - 
 -             char_list = [
 -                 self.character[text_id]
 -                 for text_id in text_index[batch_idx][selection]
 -             ]
 -             if text_prob is not None:
 -                 conf_list = text_prob[batch_idx][selection]
 -             else:
 -                 conf_list = [1] * len(selection)
 -             if len(conf_list) == 0:
 -                 conf_list = [0]
 - 
 -             text = ''.join(char_list)
 - 
 -             if self.reverse:  # for arabic rec
 -                 text = self.pred_reverse(text)
 - 
 -             result_list.append((text, np.mean(conf_list).tolist()))
 -         return result_list
 - 
 -     def get_ignored_tokens(self):
 -         return [0]  # for ctc blank
 - 
 - 
 - class CTCLabelDecode(BaseRecLabelDecode):
 -     """ Convert between text-label and text-index """
 - 
 -     def __init__(self, character_dict_path=None, use_space_char=False,
 -                  **kwargs):
 -         super(CTCLabelDecode, self).__init__(character_dict_path,
 -                                              use_space_char)
 - 
 -     def __call__(self, preds, label=None, *args, **kwargs):
 -         if isinstance(preds, tuple) or isinstance(preds, list):
 -             preds = preds[-1]
 -         if not isinstance(preds, np.ndarray):
 -             preds = preds.numpy()
 -         preds_idx = preds.argmax(axis=2)
 -         preds_prob = preds.max(axis=2)
 -         text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
 -         if label is None:
 -             return text
 -         label = self.decode(label)
 -         return text, label
 - 
 -     def add_special_char(self, dict_character):
 -         dict_character = ['blank'] + dict_character
 -         return dict_character
 
 
  |